938
Views
50
CrossRef citations to date
0
Altmetric
Articles

Recent advancements in conducting polymer bionanocomposites and hydrogels for biomedical applications

ORCID Icon
Pages 513-530 | Received 26 Aug 2020, Accepted 25 Nov 2020, Published online: 21 Dec 2020

References

  • Akbar, M. U.; Huma, Z-e.; Salman, M.; Hussain, R.; Fawad Zahoor, A.; Mansha, A.; Asim, S.; Zuber, M. Chapter 1 – Synthetic Materials to Bionanocomposites: An Overview. In Micro and Nano Technologies, Bionanocomposites; Zia, Khalid Mahmood, Jabeen, Farukh, Anjum, Muhammad Naveed, Ikram, Saiqa, Eds.; Elsevier: Germany, 2020; pp 1–20.
  • Chen, P.; Xie, F.; Tang, F.; McNally, T. Structure and Properties of Thermomechanically Processed Chitosan/Carboxymethyl Cellulose/Graphene Oxide Polyelectrolyte Complexed Bionanocomposites. Int. J. Biol. Macromol. 2020, 158, 420–429.
  • Kenane, A.; Galca, A.; Matei, E.; Yahiaoui, A.; Hachemaoui, A.; Benkouider, A.; Bartha, C.; Istrate, M.; Galatanu, M.; Rasoga, O.; Stanculescu, A. Synthesis and Characterization of Conducting Aniline and o-Anisidine Nanocomposites Based on Montmorillonite Modified Clay. Appl. Clay Sci. 2020, 184, 105395.
  • Wang, X.; Tang, Y.; Zhu, X.; Zhou, Y.; Hong, X. Preparation and Characterization of Polylactic Acid/Polyaniline/Nanocrystalline Cellulose Nanocomposite Films. Int. J. Biol. Macromol. 2020, 146, 1069–1075.
  • Pillai, M.; Kumar, S.; Houshyar, S.; Padhye, R.; Bhattacharyya, A. Effect of Nanocomposite Coating and Biomolecule Functionalization on Silk Fibroin Based Conducting 3D Braided Scaffolds for Peripheral Nerve Tissue Engineering. Nanomedicine. 2020, 24, 102131.
  • Madgula, K.; Shubha, L. N. Conducting Polymer Nanocomposite-Based Gas Sensors. In Functional Nanomaterials. Materials Horizons: From Nature to Nanomaterials; Thomas, S., Joshi, N., Tomer, V., Eds; Singapore: Springer, 2020.
  • Barabás, R.; de Souza Ávila, E.; Ladeira, L. O.; Antônio, L. M.; Tötös, R.; Simedru, D.; Bizo, L.; Cadar, O. Graphene Oxides/Carbon Nanotubes–Hydroxyapatite Nanocomposites for Biomedical Applications. Arab. J. Sci. Eng. 2020, 45, 219–227.
  • Palem, R. R.; Shimoga, G.; Rao, K. S. V. K.; Lee, S.-H.; Kang, T. J. Guar Gum Graft Polymer-Based Silver Nanocomposite Hydrogels: Synthesis, Characterization and Its Biomedical Applications. J. Polym. Res. 2020, 27, 68.
  • Agrawal, N.; Agarwal, R.; Agarwal, P. Tuning of TiO2 Nanoparticles Incorporation in Poly Methyl Methacrylate for Synthesis of Polymer Nanocomposites for Promising Biomedical Application. Mater. Today. Proc. 2020, 30, 137–144.
  • Palem, R.; Shimoga, G.; Kang, T.; Lee, S. Fabrication of Multifunctional Guar Gum-Silver Nanocomposite Hydrogels for Biomedical and Environmental Applications. Int. J. Biol. Macromol. 2020, 159, 474–486.
  • Khan, M.; Haider, S.; Shah, S.; Razak, S.; Hassan, S.; Kadir, M.; Haider, A. Arabinoxylan-co-AA/HAp/TiO2 Nanocomposite Scaffold a Potential Material for Bone Tissue Engineering: An In Vitro Study. Int. J. Biol. Macromol. 2020, 151, 584–594.
  • Mucha, M.; Wańkowicz, K.; Balcerzak, J. Analysis of Water Adsorption on Chitosan and Its Blends with Hydroxypropyl-Cellulose. e-Polymers. 2007, 7, 1–10.
  • Aggas, J. R.; Lutkenhaus, J.; Guiseppi-Elie, A. Chemiresistive and Chemicapacitive Devices Formed via Morphology Control of Electroconductive Bio-Nanocomposites. Adv. Electron. Mater. 2018, 4, 1700495.
  • Tiwari, A.; Mishra, A. P.; Dhakate, S. R.; Khan, R.; Shukla, S. K. Synthesis of Electrically Active Biopolymer–SiO2 Nanocomposite Aerogel. Mater. Lett. 2007, 61, 4587–4590.
  • Xu, X. H.; Ren, G. L.; Cheng, J.; Liu, Q.; Li, D. G.; Chen, Q. Self-Assembly of Polyaniline- Grafted Chitosan/Glucose Oxidase Nano Layered Films for Electrochemical Biosensor Applications. J. Mater. Sci. 2006, 41, 4974–4977.
  • Shukla, S. K.; Tiwari, A. Synthesis of Chemical Responsive Chitosan–Grafted-Polyaniline Bio-Composite. AMR. 2011, 306–307, 82–86.
  • Ayad, M. M.; Salahuddin, N. A.; Minisy, I. M.; Amer, W. A. Chitosan/Polyaniline Nanofibers Coating on the Quartz Crystal Microbalance Electrode for Gas Sensing. Sens. Actuators B 2014, 202, 144–153.
  • Gaharwar, A. K.; Peppas, N. A.; Khademhosseini, A. Nanocomposite Hydrogels for Biomedical Applications. Biotechnol. Bioeng. 2014, 111, 441–453.
  • Gareev, K.; Bagrets, V.; Golubkov, V.; Ivanitsa, M.; Khmelnitskiy, I.; Luchinin, V.; Mikhailova, O.; Testov, D. Synthesis and Characterization of Polyaniline-Based Composites for Electromagnetic Compatibility of Electronic Devices. Electronics. 2020, 9, 734.
  • Cho, J.; Shin, K. H.; Jang, J. Micropatterning of Conducting Polymer Tracks on Plasma Treated Flexible Substrate Using Vapor Phase Polymerization-Mediated Inkjet Printing. Synth. Met. 2010, 160, 1119–1125.
  • Gonzalez-Macia, L.; Morrin, A.; Smyth, M. R.; Killard, A. J. Advanced Printing and Deposition Methodologies for the Fabrication of Biosensors and Biodevices. Analyst. 2010, 135, 845–867.
  • Ummartyotin, S.; Juntaro, J.; Wu, C.; Sain, M.; Manuspiya, H. Deposition of PEDOT: PSS Nanoparticles as a Conductive Microlayer Anode in OLED Devices by Desktop Inkjet Printer. J. Nanomater. 2011, 2011, 1–7.
  • Alshammary, B.; Walsh, F. C.; Herrasti, P.; Ponce de Leon, C. Electrodeposited Conductive Polymers for Controlled Drug Release: Polypyrrole. J. Solid State Electrochem. 2016, 20, 839–859.
  • Stenger-Smith, J. D. Intrinsically Electrically Conducting Polymers, Synthesis, Characterization, and Their Applications. Prog. Polym. Sci. 1998, 23, 57–79.
  • Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A. M. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem. Rev. 2018, 118, 6766–6843.
  • Long, Y. Z.; Li, M. M.; Gu, C. Z.; Wan, M. X.; Duvail, J. L.; Liu, Z. W.; Fan, Z. Y. Recent Advances in Synthesis, Physical Properties and Applications of Con-Ducting Polymer Nanotubes and Nanofibers. Prog. Polym. Sci. 2011, 36, 1415–1442.
  • Nezakati, T.; Tan, A.; Lim, J.; Cormia, R. D.; Teoh, S. H.; Seifalian, A. M. Ultra-Low Percolation Threshold POSS-PCL/Graphene Electrically Conductive Polymer: Neural Tissue Engineering Nanocomposites for Neurosurgery. Mater. Sci. Eng. C. 2019, 104, 109915.
  • Ramanaviciene, A.; Kausaite, A.; Tautkus, S.; Ramanavicius, A. Biocompatibility of Polypyrrole Particles: An in-Vivo Study in Mice. J. Pharm. Pharmacol. 2007, 59, 311–315.
  • Kumar, A.; Banerjee, S.; Saikia, J. P.; Konwar, B. K. Swift Heavy Ion Irradiation Induced Enhancement in the Antioxidant Activity and Biocompatibility of Polyaniline Nanofibers. Nanotechnology. 2010, 21, 175102.
  • Wang, C. H.; Dong, Y. Q.; Sengothi, K.; Tan, K. L.; Kang, E. T. In-Vivo Tissue Response to Polyaniline. Synt. Metal. 1999, 102, 1313–1314.
  • Zhao, H. C.; Zhu, B.; Sekine, J.; Luo, S. C.; Yu, H. H. Oligoethylene-Glycol-Functionalized Polyoxythiophenes for Cell Engineering: Syntheses, Characterizations, and Cell Compatibilities. ACS Appl. Mater. Interf. 2012, 4, 680–686.
  • Garner, B.; Georgevich, A.; Hodgson, A. J.; Liu, L.; Wallace, G. G. Polypyrrole-Heparin Composites as Stimulus-Responsive Substrates for Endothelial Cell Growth. J. Biomed. Mater. Res. 1999, 44, 121–129.
  • Kim, D. H.; Wiler, J. A.; Anderson, D. J.; Kipke, D. R.; Martin, D. C. Conducting Polymers on Hydrogel-Coated Neural Electrode Provide Sensitive Neural Recordings in Auditory Cortex. Acta Biomater. 2010, 6, 57–62.
  • Persson, K. M.; Karlsson, R.; Svennersten, K.; Lo Er, S.; Jager, E. W. H.; Richter-Dahlfors, A.; Konradsson, P.; Berggren, M. Electronic Control of Cell Detachment Using a Self-Doped Conducting Polymer. Adv. Mater. 2011, 23, 4403–4408.
  • Lee, J. W.; Serna, F.; Nickels, J.; Schmidt, C. E. Carboxylic Acid-Functionalized Conductive Polypyrrole as a Bioactive Platform for Cell Adhesion. Biomacromolecules. 2006, 7, 1692–1965.
  • Nambiar, S.; Yeow, J. T. W. Conductive Polymer-Based Sensors for Biomedical Applications. Biosens. Bioelectron. 2011, 26, 1825–1832.
  • Wang, Q.; Wang, Q.; Teng, W. Injectable, Degradable, Electroactive Nanocomposite Hydrogels Containing Conductive Polymer Nanoparticles for Biomedical Applications. Int. J. Nanomed. 2016, 11, 131–145.
  • Shah, A. M.; KAdir, M. R. A.; Razak, S. I. A. Novel PLA-Based Conductive Polymercomposites for Biomedical Applications. JOM 2017, 69, 2838–2843.
  • Balint, R.; Cassidy, N. J.; Cartmell, S. H. Conductive Polymers: Towards a Smart Biomaterial for Tissue Engineering. Acta Biomater. 2014, 10, 2341–2353.
  • Demirci, S.; Sutekin, S.; Sahiner, N. Polymeric Composites Based on Carboxymethyl Cellulose Cryogel and Conductive Polymers: Synthesis and Characterization. J. Compos. Sci. 2020, 4, 33.
  • Privett, B. J.; Shin, J. H.; Schoenfisch, M. H. Electrochemical Sensors. Anal. Chem. 2010, 82, 4723–4741.
  • Andreescu, S.; Sadik, O. A. Trends and Challenges in Biochemical Sensors for Clinical and Environmental Monitoring. Pure Appl. Chem. 2004, 76, 861–878.
  • Bai, H.; Shi, G. Gas Sensors Based on Conducting Polymers. Sensors. 2007, 7, 267–307.
  • Sołoducho, J.; Cabaj, J.; Swist, A. Structure and Sensor Properties of Thin Ordered Solid Films. Sensors 2009, 9, 7733–7752.
  • Rozlosnik, N. New Directions in Medical Biosensors Employing Poly(3,4-Ethylenedioxy Thiophene) Derivative-Based Electrodes. Anal. Bioanal. Chem. 2009, 395, 637–645.
  • Zanardi, C.; Terzi, F.; Seeber, R. Polythiophenes and Polythiophene-Based Composites in Amperometric Sensing. Anal. Bioanal. Chem. 2013, 405, 509–531.
  • Patten, H. V.; Ventosa, E.; Colina, A.; Ruiz, V.; Lopez-Palacios, J.; Wain, A. J.; Lai, S. C. S.; Macpherson, J. V.; Unwin, P. R. Influence of Ultrathin Poly-(3,4-Ethylenedioxythiophene) (PEDOT) Film Supports on the Electrodeposition and Electrocatalytic Activity of Discrete Platinum Nanoparticles. J. Solid State Electrochem. 2011, 15, 2331–2339.
  • Mao, H.; Liu, X.; Chao, D.; Cui, L.; Li, Y.; Zhang, W.; Wang, C. Preparation of Unique PEDOT Nanorods with a Couple of Cuspate Tips by Reverse Interfacial Polymerization and Their Electrocatalytic Application to Detect Nitrite. J. Mater. Chem. 2010, 20, 10277–10284.
  • Decker, H.; Tuczek, F. Tyrosinase/Catecholoxidase Activity of Hemocyanins: Structural Basis and Molecular Mechanism. Trends Biochem. Sci. 2000, 25, 392–397.
  • Dantoni, P.; Serrano, S.; Oliveira Brett, A. M.; Gutz, I. Flow-Injection Determination of Catechol with a New Tyrosinase/DNA Biosensor. Anal. Chim. Acta. 1998, 366, 137–145.
  • Nistor, C.; Emneus, J.; Gorton, L.; Ciucu, A. Improved Stability and Altered Selectivity of Tyrosinase Based Graphite Electrodes for Detection of Phenolic Compounds. Anal. Chim. Acta 1999, 387, 309–326.
  • Lupu, S.; Lete, C.; Balaure, P.; Caval, D.; Mihailciuc, C.; Lakard, B.; Hihn, J.; Camp, F. Development of Amperometric Biosensors Based on Nanostructured Tyrosinase-Conducting Polymer Composite Electrodes. Sensors. 2013, 13, 6759–6774.
  • Shahadat, M.; Khan, M. Z.; Rupani, P. F.; Embrandiri, A.; Sultana, S.; Shaikh, Z. A.; Ali, S. W.; Sreekrishnan, T. R. A. Critical Review on the Prospect of Polyaniline-Grafted Biodegradable Nanocomposite. Adv. Colloid Interface Sci. 2017, 249, 2–16.
  • Shukla, S. K.; Shukla, S. K.; Govender, P. P.; Giri, N. G. Biodegradable Polymeric Nanostructures in Therapeutic Applications: Opportunities and Challenges. RSC Adv. 2016, 6, 94325–94351.
  • Ghasemi-Mobarakeh, L.; Prabhakaran, M. P.; Morshed, M.; Nasr- Esfahani, M. H.; Baharvand, H.; Kiani, S.; Al -Deyab, S. S.; Ramakrishna, S. Application of Conductive Polymers, Scaffolds and Electrical Stimulation for Nerve Tissue Engineering. J. Tissue Eng. Regen. Med. 2011, 5, e17–e35.
  • Jiang, X.; Marois, Y.; Traoré, A.; Tessier, D.; Dao, L. H.; Guidoin, R.; Zhang, Z. Tissue Reaction to Polypyrrole-Coated Polyester Fabrics: An In Vivo Study in Rats. Tissue Eng. 2002, 8, 635–647.
  • Guilak, F.; Butler, D. L.; Goldstein, S. A.; Baaijens, F. P. Biomechanics and Mechanobiology in Functional Tissue Engineering. J. Biomech. 2014, 47, 1933–1940.
  • Butler, D. L.; Goldstein, S. A.; Guldberg, R. E.; Guo, X. E.; Kamm, R.; Laurencin, C. T.; McIntire, L. V.; Mow, V. C.; Nerem, R. M.; Sah, R. L.; et al. ;. The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine. Tissue Eng. B Rev. 2009, 15, 477–484.
  • Kolarcik, C. L.; Luebben, S. D.; Sapp, S. A.; Hanner, J.; Snyder, N.; Kozai, T. D.; Chang, E.; Nabity, J. A.; Nabity, S. T.; Lagenaur, C. F.; Cui, X. T. Elastomeric and Soft Conducting Microwires for Implantable Neural Interfaces. Soft Matter. 2015, 11, 4847–4861.
  • Seyedin, S.; Razal, J. M.; Innis, P. C.; Jeiranikhameneh, A.; Beirne, S.; Wallace, G. G. Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers. ACS Appl. Mater. Interf. 2015, 7, 21150–21158.
  • Hwang, B. U.; Lee, J. H.; Trung, T. Q.; Roh, E.; Kim, D. I.; Kim, S. W.; Lee, N. E. Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities. ACS Nano. 2015, 9, 8801–8810.
  • Li, M.; Li, H.; Zhong, W.; Zhao, Q.; Wang, D. Stretchable Conductive Polypyrrole/Polyurethane (PPy/PU) Strain Sensor with Netlike Microcracks for Human Breath Detection. ACS Appl. Mater. Interf. 2014, 6, 1313–1319.
  • Madrigal, M. M. P.; Giannotti, M. I.; Oncins, G.; Franco, L.; Armelin, E.; Puiggal_, J.; Sanz, F.; del Valle, L. J. Alem_ an, C. Bioactive Nanomembranes of Semiconductor Polythiophene and Thermoplastic Polyurethane: Thermal, Nanostructural and Nanomechanical Properties. Polym. Chem. 2013, 4, 568–583.
  • Qazi, T. H.; Rai, R.; Dippold, D.; Roether, J. E.; Schubert, D. W.; Rosellini, E.; Barbani, N.; Boccaccini, A. R. Development and Characterization of Novel Electrically Conductive PANI-PGS Composites for Cardiac Tissue Engineering Applications. Acta Biomater. 2014, 10, 2434–2445.
  • Jun, I.; Jeong, S.; Shin, H. The Stimulation of Myoblast Differentiation by Electrically Conductive Sub-Micron Fibers. Biomaterials. 2009, 30, 2038–2047.
  • Perez-Madrigal, M. M.; Giannotti, M. I.; del Valle, L. J.; Franco, L.; Armelin, E.; Puiggal._, J.; Sanz, F.; Aleman, C. Thermoplastic Polyurethane:Polythiophene Nanomembranes for Biomedical and Biotechnological Applications. ACS Appl. Mater. Interf. 2014, 6, 9719–9732.
  • Costantini, A.; Luciani, G.; Annunziata, G.; Silvestri, B.; Branda, F. Swelling Properties and Bioactivity of Silica Gel/pHEMA Nanocomposites. J. Mater. Sci. Mater. Med. 2006, 17, 319–325.
  • Lee, H.; Yang, G. H.; Jae, M. K.; Lee, Y.; Huh, J. T.; Kim, G. H. Fabrication of Micro/Nanoporous Collagen/dECM/Silk-Fibroin Biocomposite Scaffolds Using a Low Temperature 3D Printing Process for Bone Tissue Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 84, 140–147.
  • Kim, Y. D.; Kim, J. H. Synthesis of Polypyrrole-Polycaprolactone Composites by Emulsion Polymerization and the Electrorheological Behavior of Their Suspensions. Colloid Polym. Sci. 2008, 286, 631–637.
  • Lee, J. Y.; Bashur, C. A.; Goldstein, A. S.; Schmidt, C. E. Polypyrrole-Coated Electrospun PLGA Nanofibers for Neural Tissue Applications. Biomaterials. 2009, 30, 4325–4335.
  • Shi, G. X.; Rouabhia, M.; Wang, Z. X.; Dao, L. H.; Zhang, Z. A Novel Electrically Conductive and Biodegradable Composite Made of Polypyrrole Nanoparticles and Polylactide. Biomaterials. 2004, 25, 2477–2488.
  • Runge, M. B.; Dadsetan, M.; Baltrusaitis, J.; Knight, A. M.; Ruesink, T.; Lazcano, E. A.; Lu, L.; Windebank, A. J.; Yaszemski, M. J. The Development of Electrically Conductive Polycaprolactone Fumarate-Polypyrrole Composite Materials for Nerve Regeneration. Biomaterials. 2010, 31, 5916–5926.
  • Xie, J. W.; MacEwan, M. R.; Willerth, S. M.; Li, X. R.; Moran, D. W.; Sakiyama-Elbert, S. E.; Xia, Y. Conductive Core-Sheath Nanofibers and Their Potential Application in Neural Tissue Engineering. Adv. Funct. Mater. 2009, 19, 2312–2318.
  • Shi, G. X.; Rouabhia, M.; Meng, S. Y.; Zhang, Z. Electrical Stimulation Enhances Viability of Human Cutaneous Fibroblasts on Conductive Biodegradable Substrates. J. Biomed. Mater. Res. 2008, 84, 1026–1037.
  • Li, M. Y.; Guo, Y.; Wei, Y.; MacDiarmid, A. G.; Lelkes, P. I. Electrospinning Polyaniline- Contained Gelatin Nanofibers for Tissue Engineering Applications. Biomaterials. 2006, 27, 2705–2715.
  • Kim, H. S.; Hobbs, H. L.; Wang, L.; Rutten, M. J.; Wamser, C. C. Biocompatible Composites of Polyaniline Nanofibers and Collagen. Synth. Met. 2009, 159, 1313–1318.
  • Moroder, P.; Runge, M. B.; Wang, H. A.; Ruesink, T.; Lu, L. C.; Spinner, R. J.; Windebank, A. J.; Yaszemski, M. J. Material Properties and Electrical Stimulation Regimens of Polycaprolactone Fumarate-Polypyrrole Scaffolds as Potential Conductive Nerve Conduits. Acta Biomater. 2011, 7, 944–953.
  • Broda, C. R.; Lee, J. Y.; Sirivisoot, S.; Schmidt, C. E.; Harrison, B. S. A Chemically Polymerized Electrically Conducting Composite of Polypyrrole Nanoparticles and Polyurethane for Tissue Engineering. J. Biomed. Mater. Res. 2011, 98, 509–516.
  • Huang, J. H.; Hu, X. Y.; Lu, L.; Ye, Z.; Zhang, Q. Y.; Luo, Z. J. Electrical Reg-Ulation of Schwann Cells Using Conductive Polypyrrole/Chitosan Polymers. J. Biomedical Mat. Res. A 2010, 93, 164–174.
  • Wan, Y.; Wu, H.; Wen, D. J. Porous-Conductive Chitosan Scaffolds for Tissue Engineering, 1. Preparation and characterization. Macromol. Biosci. 2004, 4, 882–890.
  • Ghasemi-Mobarakeh, L.; Prabhakaran, M. P.; Morshed, M.; Nasr-Esfahani, M. H.; Ramakrishna, S. Electrical Stimulation of Nerve Cells Using Conductive Nanofibrous Scaffolds for Nerve Tissue Engineering. Tissue Eng. A. 2009, 15, 3605–3619.
  • Kang, E. T.; Neoh, K. G.; Huang, S. W.; Lim, S. L.; Tan, K. L. Surface-Functionalized Polyaniline Films. J. Phys. Chem. B. 1997, 101, 10744–10750.
  • Jeong, S. I.; Jun, I. D.; Choi, M. J.; Nho, Y. C.; Lee, Y. M.; Shin, H. Development of Electroactive and Elastic Nanofibers That Contain Polyaniline and Poly(l-Lactide-co-Epsilon Caprolactone) for the Control of Cell Adhesion. Macromol. Biosci. 2008, 8, 627–637.
  • Sirivisoot, S.; Pareta, R.; Harrison, B. S. Protocol and Cell Responses in Three-Dimensional Conductive Collagen Gel Scaffolds with Conductive Polymer Nanofibres for Tissue Regeneration. Interface Focus. 2014, 4, 20130050.
  • Ge, D.; Qi, R.; Mu, J.; Ru, X.; Hong, S.; Ji, S.; Linkov, V.; Shi, W. A Self-Powered and Thermally-Responsive Drug Delivery System Based on Conducting Polymers. Electrochem. Commun. 2010, 12, 1087–1090.
  • Wang, P.; Huang, C.; Xing, Y.; Fang, W.; Ren, J.; Yu, H.; Wang, G. NIR-Light- and pH-Responsive Graphene Oxide Hybrid Cyclodextrin-Based Supramolecular Hydrogels. Langmuir 2019, 35, 1021–1031.
  • Fabbro, C.; Ali-Boucetta, H.; Da Ros, T.; Kostarelos, K.; Bianco, A.; Prato, M. Targeting Carbon Nanotubes Against Cancer. Chem. Commun. 2012, 48, 3911–3926.
  • Wang, H.; Zhao, P.; Liang, X.; Gong, X.; Song, T.; Niu, R.; Chang, J. Folate-PEG Coated Cationic Modified Chitosan-Cholesterol Liposomes for Tumor-Targeted Drug Delivery. Biomaterials. 2010, 31, 4129–4138.
  • Arunraj, T. R.; Rejinold, N. S.; Kumar, N. A.; Jayakumar, R. Doxorubicin-Chitin-Poly (Caprolactone) Composite Nanogel for Drug Delivery. Int. J. Biol. Macromol. 2013, 62, 35–43.
  • Najafabadi, A. H.; Abdouss, M.; Faghihi, S. Synthesis and Evaluation of PEG-O-Chitosan Nanoparticles for Delivery of Poor Water Soluble Drugs: Ibuprofen. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 41, 91–99.
  • Pawar, H.; Douroumis, D.; Boateng, J. S. Preparation and Optimization of PMAA-chitosan-PEG Nanoparticles for Oral Drug Delivery. Colloids Surf. B Biointerf. 2012, 90, 102–108.
  • Gu, C.; Le, V.; Lang, M.; Liu, J. Preparation of Polysaccharide Derivates Chitosan- Graft-Poly (e-Caprolactone) Amphiphilic Copolymer Micelles for 5-Fluorouracil Drug Delivery. Colloids Surf. B Biointerf. 2014, 116, 745–750.
  • Liu, C.; Wu, Y.; Zhao, L.; Huang, X. Preparation of Acetylsalicylic Acid-Acylated Chitosan as a Novel Polymeric Drug for Drug Controlled Release. Int. J. Biol. Macromol. 2015, 78, 189–194.
  • Yan, S.; Rao, S.; Zhu, J.; Wang, Z.; Zhang, Y.; Duan, Y.; Chen, X.; Yin, J. Nanoporous Multilayer Poly(l-Glutamic Acid)/Chitosan Microcapsules for Drug Delivery. Int. J. Pharm. 2012, 427, 443–451.
  • Shukla, S. K. Imaging, Tissue Engineering, Nanostructure Polymers in Function Generating Substitute and Organ Transplants. In Nanomaterials in Drug Delivery; Tiwari, Ashutosh, Tiwari, Atul, Eds.; Beverly, MA: Scrivener Publishing LLC, 2013; pp 389–416.
  • Sabel, B. A.; Dominiak, P.; H€Auser, W.; During, M. J.; Freese, A. Levodopa Delivery from Controlled-Release Polymer Matrix: delivery of More than 600 Days in Vitro and 225 Days of Elevated Plasma Levels after Subcutaneous Implantation in Rats. J. Pharmacol. Exp. Therm. 1990, 255, 914–922.
  • Becker, J. B.; Robinson, T. E.; Barton, P.; Sintov, A.; Siden, R.; Levy, R. J. Sustained Behavioral Recovery from Unilateral Nigrostriatal Damage Produced by the Controlled Release of Dopamine from a Silicone Polymer Pellet Placed into the Denervated Striatum. Brain Res. 1990, 508, 60–64.
  • Yannas, I. V.; Orgill, D. P.; Silver, J.; Norregaard, T. V.; Zervas, N. T.; Schoene, W. C. Polymeric Template Facilitates Regeneration of Sciatic-Nerve across 15-mm Gap. Trans. Soc. Biomater. 1985, 11, 146.
  • Madison, R. D.; Da Silva, C. F.; Dikkes, P. Entubulation Repair with Protein Additives Increases the Maximum Nerve Gap Distance Successfully Bridged with Tubular Prostheses. Brain Res. 1988, 447, 325–334.
  • Valentini, R. F.; Aebischer, P.; Winn, S. R.; Galletti, P. M. Collagen- and Laminin-Containing Gels Impede Peripheral Nerve Regeneration through Semipermeable Nerve Guidance Channels. Exp. Neurol. 1987, 98, 350–356.
  • Zhang, Z.; Rouabhia, M.; Wang, Z.; Roberge, C.; Shi, G.; Roche, P.; Li, J.; Dao, L. H. Electrically Conductive Biodegradable Polymer Composite for Nerve Regeneration: Electricity-Stimulated Neurite Outgrowth and Axon Regeneration. Artif. Organs. 2007, 31, 13–22.
  • Song, J.; Sun, B.; Liu, S.; Chen, W.; Zhang, Y.; Wang, C.; Mo, X.; Che, J.; Ouyang, Y.; Yuan, W.; Fan, C. Polymerizing Pyrrole Coated Poly (l-Lactic Acid-co-e-Caprolactone) (PLCL) Conductive Nanofibrous Conduit Combined with Electric Stimulation for Long-Range Peripheral Nerve Regeneration. Front. Mol. Neurosci. 2016, 9, 117.
  • Wang, S.; Guan, S.; Zhu, Z.; Li, W.; Liu, T.; Ma, X. Hyaluronic Acid doped-poly(3,4-Ethylenedioxythiophene)/Chitosan/Gelatin (PEDOT-HA/Cs/Gel) Porous Conductive Scaffold for Nerve Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 308–316.
  • Heo, D. N.; Song, S.-J.; Kim, H.-J.; Lee, Y. J.; Ko, W.-K.; Lee, S. J.; Lee, D.; Park, S. J.; Zhang, L. G.; Kang, J. Y.; et al. ;. Multifunctional Hydrogel Coatings on the Surface of Neural Cuff Electrode for Improving Electrode-Nerve Tissue Interfaces. Acta Biomater. 2016, 39, 25–33.
  • Pietrucha, K.; Marzec, E.; Kudzin, M. Pore Structure and Dielectric Behaviour of the 3D collagen-DAC Scaffolds Designed for Nerve Tissue Repair. Int. J. Biol. Macromol. 2016, 92, 1298–1306.
  • Xu, D.; Fan, L.; Gao, L.; Xiong, Y.; Wang, Y.; Ye, Q.; Yu, A.; Dai, H.; Yin, Y.; Cai, J.; Zhang, L. Micro-Nanostructured Polyaniline Assembled in Cellulose Matrix via Interfacial Polymerization for Applications in Nerve Regeneration. ACS Appl. Mater. Interf. 2016, 8, 17090–17097.
  • Hutmacher, D. W. Scaffold Design and Fabrication Technologies for Engineering Tissues – State of the Art and Future Perspectives. J. Biomater. Sci. Poly. Ed. 2001, 12, 107–124.
  • Dvir, T.; Timko, B. P.; Kohane, D. S.; Langer, R. Nanotechnological Strategies for Engineering Complex Tissues. Nat. Nanotechnol. 2011, 6, 13–22.
  • Luo, Y.; Engelmayr, G.; Auguste, D. T.; Ferreira, L.; Karp, J. M.; Saigal, R. Three Dimensional Scaffolds. In Principles of Tissue Engineering, 3rd ed.; Lanza, R.; Langer, R.; Vacanti, J.P, Eds.; Elsevier, Amsterdam: Academic Press, 2007; pp 359–373.
  • Keaveny, T. M.; Morgan, E. F.; Yeh, O. C. Bone Mechanics in Standard Handbook of Biomedical Engineering and Design. In Kutz, M., Ed.; Mc-Graw Hill: New York, NY, 2003; Vol. 8, pp 1–22.
  • Alves, N. M.; Pashkuleva, I.; Reis, R. L.; Mano, J. F. Controlling Cell Behavior through the Design of Polymer Surfaces. Small. 2010, 6, 2208–2220.
  • Castner, D. G.; Ratner, B. D. Biomedical Surface Science: Foundations to Frontiers. Surf. Sci. 2002, 500, 28–60.
  • Paul, M. A.; Delcourt, C.; Alexandre, M.; Degee, P.; Monteverde, F.; Dubois, P. Polylactide/Montmorillonite Nanocomposites: study of the Hydrolytic Degradation. Polym. Degrad. Stab. 2005, 87, 535–542.
  • Shamekhi, M. A.; Mirzadeh, H.; Mahdavi, H.; Rabiee, A.; Mohebbi-Kalhori, D.; Eslaminejad, M. B. Graphene Oxide Containing Chitosan Scaffolds for Cartilage Tissue Engineering. Int. J. Biol. Macromol. 2019, 127, 396–405.
  • Adams, C.; Frantz, J.; Bugbee, B. Macro- and Micronutrient- Release Characteristics of Three Polymer-Coated Fertilizers: Theory and Measurements. J. Plant Nutr. Soil Sci. 2013, 176, 76–88.
  • Abd El-Aziz, M. E.; Morsi, S. M. M.; Salama, D. M.; Abdel-Aziz, M. S.; Abd Elwahed, M. S.; Shaaban, E. A.; Youssef, A. M. Preparation and Characterization of Chitosan/Polyacrylic Acid/Copper Nanocomposites and Their Impact on Onion Production. Int. J. Biol. Macromol. 2019, 123, 856–865.
  • Bhardwaj, A. K.; Shainberg, I.; Goldstein, D.; Warrington, D. N.; Levy, G. J. Water Retention and Hydraulic Conductivity of Cross-Linked Polyacrylamides in Sandy Soils. Soil Sci. Soc. Am. J. 2007, 71, 406–412.
  • Rhim, J. W.; Park, H. M.; Ha, C. S. Bio-Nanocomposites for Food Packaging Applications. Prog. Polym. Sci. 2013, 38, 1629–1652.
  • Neethirajan, S.; Ragavan, V.; Weng, X.; Chand, R. Biosensors for Sustainable Food Engineering: Challenges and Perspectives. Biosensors. 2018, 8, 23.
  • Arora, K. Advances in Nano Based Biosensors for Food and Agriculture. In Nanotechnology, Food Security and Water Treatment. Environmental Chemistry for a Sustainable World; Gothandam K., Ranjan S., Dasgupta N., Ramalingam C. Lichtfouse E., Eds.; Springer: Cham, 2018; pp 1–52.
  • Guilherme, M. R.; Aouada, F. A.; Fajardo, A. R.; Martins, A. F.; Paulino, A. T.; Davi, M. F. T.; Rubira, A. F.; Muniz, E. C. Superabsorbent Hydrogels Based on Polysaccharides for Application in Agriculture as Soil Conditioner and Nutrient Carrier: A Review. Eur. Polym. J. 2015, 72, 365–385.
  • Mello, L. D.; Kubota, L. T. Review of the Use of Biosensors as Analytical Tools in the Food and Drink Industries. Food Chem. 2002, 77, 237–256.
  • Naseri, M.; Fotouhi, L.; Ehsani, A. Recent Progress in the Development of Conducting Polymer-Based Nanocomposites for Electrochemical Biosensors Applications: A Mini- Review. Chem. Rec. 2018, 18, 1–21.
  • Feller, J. F. Conductive Polymer Composites: influence of Extrusion Conditions on Positive Temperature Coefficient Effect of Poly(Butylene Terephthalate)/Poly(Olefin)-Carbon Black Blends. J. Appl. Polym. Sci. 2004, 91, 2151–2157.
  • Shukla, S. K.; Parlak, O.; Shukla, S. K.; Mishra, S.; Turner, A. P.; Tiwari, A. Self- Reporting Micellar Polymer Nanostructures for Optical Urea Biosensing. Ind. Eng. Chem. Res. 2014, 53, 8509–8514.
  • Buk, V.; Emregul, E.; Emregul, K. C. Alginate Copper Oxide Nano-Biocomposite as a Novel Material for Amperometric Glucose Biosensing. Mater. Sci. Eng. C. 2017, 74, 307–314.
  • Yao, J.; Ji, P.; Wang, B.; Wang, H.; Chen, S. Color-Tunable Luminescent Acrofibers Based on CdTe QDs-Loaded Bacterial Cellulose Nanofibers for pH and Glucose Sensing. Sens. Actu. B Chem. 2018, 254, 110–119.
  • Sharma, A.; Kumar, A. Study of Structural and Electro-Catalytic Behaviour of Amperometric Biosensor Based on Chitosan/Polypyrrole Nanotubes-Gold Anoparticles Nano Composites. Synth. Met. 2016, 220, 551–559.
  • Retama, J. R.; Mecerreyes, D.; Lopez-Ruiz, B.; Lopez-Cabarcos, E. Synthesis and Characterization of Semiconducting Polypyrrole/Polyacrylamide Microparticles with GOx for Biosensor Applications. Colloids Surf. A Physiochem. Eng. Asp. 2005, 270–271, 239–244.
  • Xi, F.; Liu, L.; Wu, Q.; Lin, X. One-Step Construction of Biosensor Based on Chitosan-Ionic Liquid-Horseradish Peroxidase Biocomposite Formed by Electrodeposition. Biosens. Bioelectron. 2008, 24, 29–34.
  • Wu, H.; Wang, J.; Kang, X.; Wang, C.; Wang, D.; Liu, J.; Aksay, I. A.; Lin, Y. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Platinum Nanoparticles/Graphene/Chitosan Nanocomposite Film. Talanta. 2009, 80, 403–406.
  • Sultana, S. Synthesis, Characterization and Electrical Properties of CdI2 Doped Al2O3 and TiO2 Superionic Conductors. J. Alloys Compd. 2011, 509, 9842–9848.
  • Kurniawan, T. A.; Chan, G. Y.; Lo, W. H.; Babel, S. Physico–Chemical Treatment Techniques for Waste Water Laden with Heavy Metals. Chem. Eng. J. 2006, 118, 93–98.
  • Gandhi, M. R.; Viswanathan, N.; Meenakshi, S. Preparation and Application of Alumina/Chitosan Biocomposite. Int. J. Biol. Macromol. 2010, 47, 146–154.
  • Jayakumar, R.; Prabaharan, M.; Reis, R. L.; Mano, J. F. Graft Copolymerized Chitosan— Present Status and Applications. Carbohydr. Polym. 2005, 62, 142–158.
  • Ahmed, E. M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121.
  • Sun, Y.; Kaplan, J. A.; Shieh, A.; Sun, H.-L.; Croce, C. M.; Grinstaff, M. W.; Parquette, J. R. Self-Assembly of a 5-Fluorouracil-Dipeptide Hydrogel. Chem. Commun. 2016, 52, 5254–5257.
  • Yu, X.; Chen, X.; Chai, Q.; Ayres, N. Synthesis of Polymer Organogelators Using Hydrogen Bonding as Physical Cross-Links. Colloid Polym. Sci. 2016, 294, 59–68.
  • Billiet, T.; Vandenhaute, M.; Schelfhout, J.; Van Vlierberghe, S.; Dubruel, P. A Review of Trends and Limitations in Hydrogel-Rapid Prototyping for Tissue Engineering. Biomaterials. 2012, 33, 6020–6041.
  • Gelmi, A.; Ljunggren, M. K.; Green, R. A.; Hassarati, R. T.; Goding, J. A.; Baek, S.; Lovell, N. H.; Martens, P. J.; Poole-Warren, L. A. Conductive Hydrogels: Mechanically Robust Hybrids for Use as Biomaterials. Macromol. Biosci. 2012, 12, 494–501.
  • Tang, Q.; Wu, J.; Sun, H.; Lin, J.; Fan, S.; Hu, D. Polyaniline/Polyacrylamide Conducting Composite Hydrogel with a Porous Structure. Carbohydr. Polym. 2008, 74, 215–219.
  • Guo, B.; Finne-Wistrand, A.; Albertsson, A.-C. Degradable and Electroactive Hydrogels with Tunable Electrical Conductivity and Swelling Behavior. Chem. Mater. 2011, 23, 1254–1262.
  • Chen, Y.; Feng, H.; Li, L.; Shang, S.; Chun-Wah Yuen, M. Synthesis and Properties of Polypyrrole/Chitosan Composite Hydrogels. J. Macromol. Sci. A. 2013, 50, 1225–1229.
  • Tsai, T.-S.; Pillay, V.; Choonara, Y. E.; Du Toit, L. C.; Modi, G.; Naidoo, D.; Kumar, P. A Polyvinyl Alcohol-Polyaniline Based Electro-Conductive Hydrogel for Controlled Stimuli-Actuable Release of Indomethacin. Polymers. 2011, 3, 150–172.
  • Wallace, G.; Spinks, G. Conducting Polymers – Bridging the Bionic Interface. Soft Matter. 2007, 3, 665–671.
  • Liu, X.; Gilmore, K. J.; Moulton, S. E.; Wallace, G. G. Electrical Stimulation Promotes Nerve Cell Differentiation on Polypyrrole/Poly (2-Methoxy-5 Aniline Sulfonic Acid) Composites. J. Neural Eng. 2009, 6, 065002.
  • Nakamura, K.; Kinoshita, E.; Hatakeyama, T.; Hatakeyama, H. TMA Measurement of Swelling Behavior of Polysaccharide Hydrogels. Thermochim. Acta. 2000, 352–353, 171–176.
  • Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From Controlled Release to pH-Responsive Drug Delivery. Drug Discov. Today. 2002, 7, 569–579.
  • Dou, P.; Liu, Z.; Cao, Z.; Zheng, J.; Wang, C.; Xu, X. Rapid Synthesis of Hierarchical Nanostructured Polyaniline Hydrogel for High Power Density Energy Storage Application and Three-Dimensional Multilayers Printing. J. Mater. Sci. 2016, 51, 4274–4282.
  • Bredas, J. L.; Street, G. B. Polarons, Bipolarons, and Solitons in Conducting Polymers. Acc. Chem. Res. 1985, 18, 309–315.
  • Liu, Q.; Wu, J.; Lan, Z.; Zheng, M.; Yue, G.; Lin, J.; Huang, M. Preparation of PAA-g-PEG/PANI Polymer Gel Electrolyte and Its Application in Quasi Solid State Dye-Sensitized Solar Cells. Polym. Eng. Sci. 2015, 55, 322–326.
  • Mawad, D.; Stewart, E.; Officer, D. L.; Romeo, T.; Wagner, P.; Wagner, K.; Wallace, G. G. A Single Component Conducting Polymer Hydrogel as a Scaffold for Tissue Engineering. Adv. Funct. Mater. 2012, 22, 2692–2699.
  • Strong, L. E.; Dahotre, S. N.; West, J. L. Hydrogel-Nanoparticle Composites for Optically Modulated Cancer Therapeutic Delivery. J. Control. Release. 2014, 178, 63–68.
  • Ma, C.; Shi, Y.; Pena, D. A.; Peng, L.; Yu, G. Thermally Responsive Hydrogel Blends: A General Drug Carrier Model for Controlled Drug Release. Angew. Chem. Int. Ed. Engl. 2015, 54, 7376–7380.
  • Li, L.; Shi, Y.; Pan, L.; Shi, Y.; Yu, G. Rational Design and Applications of Conducting Polymer Hydrogels as Electrochemical Biosensors. J. Mater. Chem. B. 2015, 3, 2920–2930.
  • Harrison, B. S.; Atala, A. Carbon Nanotube Applications for Tissue Engineering. Biomaterials. 2007, 28, 344–353.
  • Shevach, M.; Fleischer, S.; Shapira, A.; Dvir, T. Gold Nanoparticle-Decellularized Matrix Hybrids for Cardiac Tissue Engineering. Nano Lett. 2014, 14, 5792–5796.
  • Skardal, A.; Zhang, J.; McCoard, L.; Xu, X.; Oottamasathien, S.; Prestwich, G. D. Photocrosslinkable Hyaluronan-Gelatin Hydrogels for Two-Step Bioprinting. Tissue Eng. A. 2010, 16, 2675–2685.
  • Sun, H.; Zhou, J.; Huang, Z.; Qu, L.; Lin, N.; Liang, C.; Dai, R.; Tang, L.; Tian, F. Carbon Nanotube-Incorporated Collagen Hydrogels Improve Cell Alignment and the Performance of Cardiac Constructs. IJN. 2017, 12, 3109–3120.
  • Chansai, P.; Sirivat, A.; Niamlang, S.; Chotpattananont, D.; Viravaidya-Pasuwat, K. Controlled Transdermal Iontophoresis of Sulfosalicylic Acid from Polypyrrole/Poly(Acrylic Acid) Hydrogel. Int. J. Pharm. 2009, 381, 25–33.
  • Runge, M. B.; Dadsetan, M.; Baltrusaitis, J.; Ruesink, T.; Lu, L.; Windebank, A. J.; Yaszemski, M. J. Development of Electrically Conductive Oligo(Polyethylene Glycol) Fumarate-Polypyrrole Hydrogels for Nerve Regeneration. Biomacromolecules. 2010, 11, 2845–2853.
  • Ding, H.; Zhong, M.; Kim, Y. J.; Pholpabu, P.; Balasubramanian, A.; Hui, C. M.; He, H.; Yang, H.; Matyjaszewski, K.; Bettinger, C. J. Biologically Derived Soft Conducting Hydrogels Using Heparin-Doped Polymer Networks. ACS Nano. 2014, 8, 4348–4357.
  • Guarino, V.; Alvarez-Perez, M. A.; Borriello, A.; Napolitano, T.; Ambrosio, L. Conductive PANi/PEGDA Macroporous Hydrogels for Nerve Regeneration. Adv. Healthc. Mater. 2013, 2, 218–227.
  • Xu, L.; Li, X.; Takemura, T.; Hanagata, N.; Wu, G.; Chou, L. L. Genotoxicity and Molecular Response of Silver Nanoparticle (NP)-Based Hydrogel. J. Nanobiotechnol. 2012, 10, 16.
  • Xing, R.; Liu, K.; Jiao, T.; Zhang, N.; Ma, K.; Zhang, R.; Zou, Q.; Ma, G.; Yan, X. An Injectable Self-Assembling Collagen–Gold Hybrid Hydrogel for Combinatorial Antitumor Photothermal/Photodynamic Therapy. Adv. Mater. 2016, 28, 3669–3676.
  • Zare, M.; Ramezani, Z.; Rahbar, N. Development of Zirconia Nanoparticles-Decorated Calcium Alginate Hydrogel Fibers for Extraction of Organophosphorous Pesticides from Water and Juice Samples: Facile Synthesis and Application with Elimination of Matrix Effects. J. Chromatogr. A. 2016, 1473, 28–37.
  • Paquet, C.; de Haan, H. W.; Leek, D. M.; Lin, H.-Y.; Xiang, B.; Tian, G.; Kell, A.; Simard, B. Clusters of Superparamagnetic Iron Oxide Nanoparticles Encapsulated in a Hydrogel: A Particle Architecture Generating a Synergistic Enhancement of the T2 Relaxation. ACS Nano. 2011, 5, 3104–3112.
  • Shi, X.; Gu, W.; Li, B.; Chen, N.; Zhao, K.; Xian, Y. Enzymatic Biosensors Based on the Use of Metal Oxide Nanoparticles. Microchim. Acta. 2014, 181, 1–22.
  • Gutiérrez-Sánchez, C.; Pita, M.; Vaz-Domínguez, C.; Shleev, S.; De Lacey, A. L. Gold Nanoparticles as Electronic Bridges for Laccase-Based Biocathodes. J. Am. Chem. Soc. 2012, 134, 17212–17220.
  • Shi, Y.; Ma, C.; Peng, L.; Yu, G. Conductive “Smart” Hybrid Hydrogels with PNIPAM and Nanostructured Conductive Polymers. Adv. Funct. Mater. 2015, 25, 1219–1225.
  • Gehrke, S. H.; Fisher, J. P.; Palasis, M.; Lund, M. E. Factors Determining Hydrogel Permeability. Ann. N. Y. Acad. Sci. 2006, 831, 179–184.
  • Pedrotty, D. M.; Koh, J.; Davis, B. H.; Taylor, D. A.; Wolf, P.; Niklason, L. E. Engineering Skeletal Myoblasts: Roles of Three-Dimensional Culture and Electrical Stimulation. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H1620–H1626.
  • Gilmore, K.; Hodgson, A. J.; Luan, B.; Small, C. J.; Wallace, G. G. Preparation of Hydrogel/Conducting Polymer Composites. Polym. Gels Netw. 1994, 2, 135–143.
  • Kawahara, Y.; Yamaoka, K.; Iwata, M.; Fujimura, M.; Kajiume, T.; Magaki, T.; Takeda, M.; Ide, T.; Kataoka, K.; Asashima, M.; Yuge, L. Novel Electrical Stimulation Sets the Cultured Myoblast Contractile Function to ‘on'. Pathobiology. 2006, 73, 288–294.
  • Choi, Y.-J.; Yi, H.-G.; Kim, S.-W.; Cho, D.-W. 3D Cell Printed Tissue Analogues: A New Platform for Theranostics. Theranostics. 2017, 7, 3118–3137.
  • Sayyar, S.; Murray, E.; Thompson, B. C.; Chung, J.; Officer, D. L.; Gambhir, S.; Spinks, G. M.; Wallace, G. G. Processable Conducting Graphene/Chitosan Hydrogels for Tissue Engineering. J. Mater. Chem. B. 2015, 3, 481–490.
  • Jing, X.; Mi, H.-Y.; Napiwocki, B. N.; Peng, X.-F.; Turng, L.-S. Mussel-Inspired Electroactive Chitosan/Graphene Oxide Composite Hydrogel with Rapid Self-Healing and Recovery Behavior for Tissue Engineering. Carbon. 2017, 125, 557–570.
  • Yang, B.; Yao, F.; Hao, T.; Fang, W.; Ye, L.; Zhang, Y.; Wang, Y.; Li, J.; Wang, C. Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering. Adv. Healthc. Mater. 2016, 5, 474–488.
  • Gajendiran, M.; Choi, J.; Kim, S.-J.; Kim, K.; Shin, H.; Koo, H.-J.; Kim, K. Conductive Biomaterials for Tissue Engineering Applications. J. Ind. Eng. Chem. 2017, 51, 12–26.
  • Baena, J. M.; Galvez-Martin, P.; Sabata, R. Development of Scaffolds for Regenerative Medicine. J. Biotechnol. Biomater. 2017, 7.
  • Shi, Z.; Gao, H.; Feng, J.; Ding, B.; Cao, X.; Kuga, S.; Wang, Y.; Zhang, L.; Cai, J. In Situ Synthesis of Robust Conductive Cellulose/Polypyrrole Composite Aerogels and Their Potential Application in Nerve Regeneration. Angew. Chem. Int. Ed. Engl. 2014, 53, 5380–5384.
  • Shin, S. R.; Jung, S. M.; Zalabany, M.; Kim, K.; Zorlutuna, P.; Kim, S. B.; Nikkhah, M.; Khabiry, M.; Azize, M.; Kong, J.; et al. Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators. ACS Nano. 2013, 7, 2369–2380.
  • Bu, Y.; Xu, H.-X.; Li, X.; Xu, W.-J.; Yin, Y.-X.; Dai, H.-L.; Wang, X.-B.; Huang, Z.-J.; Xu, P.-H. A Conductive Sodium Alginate and Carboxymethyl Chitosan Hydrogel Doped with Polypyrrole for Peripheral Nerve Regeneration. RSC Adv. 2018, 8, 10806–10817.
  • Tomczykowa, M.; Plonska-Brzezinska, M. Conducting Polymers, Hydrogels and Their Composites: Preparation, Properties and Bioapplications. Polymers. 2019, 11, 350.
  • Bose, S.; Roy, M.; Bandyopadhyay, A. Recent Advances in Bone Tissue Engineering Scaffolds. Trends Biotechnol. 2012, 30, 546–554.
  • Demirtaş, T. T.; Irmak, G.; Gümüşderelioğlu, M. A Bioprintable Form of Chitosan Hydrogel for Bone Tissue Engineering. Biofabrication. 2017, 9, 035003.
  • Liu, D.; Zhang, J.; Yi, C.; Yang, M. The Effects of Gold Nanoparticles on the Proliferation, Differentiation, and Mineralization Function of MC3T3-E1 Cells in Vitro. Chin. Sci. Bull. 2010, 55, 1013–1019.
  • Heo, D. N.; Ko, W.-K.; Bae, M. S.; Lee, J. B.; Lee, D.-W.; Byun, W.; Lee, C. H.; Kim, E.-C.; Jung, B.-Y.; Kwon, I. K. Enhanced Bone Regeneration with a Gold Nanoparticle-Hydrogel Complex. J. Mater. Chem. B. 2014, 2, 1584–1593.
  • Khorshidi, S.; Karkhaneh, A. Hydrogel/Fiber Conductive Scaffold for Bone Tissue Engineering. J. Biomed. Mater. Res. A. 2018, 106, 718–724.
  • Zanjanizadeh Ezazi, N.; Shahbazi, M. A.; Shatalin, Y. V.; Nadal, E.; Makila, E.; Salonen, J.; Kemell, M.; Correia, A.; Hirvonen, J.; Santos, H. A. Conductive Vancomycin-Loaded Mesoporous Silica Polypyrrole-Based Scaffolds for Bone Regeneration. Int. J. Pharm. 2018, 536, 241–250.
  • Ribeiro, M.; Ferraz, M. P.; Monteiro, F. J.; Fernandes, M. H.; Beppu, M. M.; Mantione, D.; Sardon, H. Antibacterial Silk Fibroin/Nanohydroxyapatite Hydrogels with Silver and Gold Nanoparticles for Bone Regeneration. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 231–239.
  • Tao, Y.; Zhao, J. X.; Wu, C. X. Polyacrylamide Hydrogels with Trapped Sulfonated Polyaniline. Eur. Polym. J. 2005, 41, 1342–1349.
  • Lin, P.; Yan, F.; Chan, H. L. W. Improvement of the Tunable Wettability Property of Poly(3-alkylthiophene) Films. Langmuir. 2009, 25, 7465–7470.
  • Idumah, C.; Hassan, A.; Affam, A. A Review of Recent Developments in Flammability of Polymer Nanocomposites. Rev. Chem. Eng. 2015, 31, 149–177.
  • Idumah, C.; Hassan, A. Characterization and Preparation of Conductive Exfoliated Graphene Nanoplatelets Kenaf Fibre Hybrid Polypropylene Composites. Syn. Met. 2016, 212, 91–104.
  • Idumah, C.; Hassan, A. Recently Emerging Trends in Thermal Conductivity of Polymer Nano-Composites. Rev. Chem. Eng. 2016, 32, 413–457.
  • Idumah, C.; Hassan, A. Emerging Trends in Flame Retardancy of Biofibers, Biopolymers, Bio-Composites, and Bionanocomposites. Rev. Chem. Eng. 2015, 32, 115–148.
  • Idumah, C.; Hassan, A. Emerging Trends in Graphene Carbon Based Polymer Nanocompo-Sites and Applications. Rev. Chem. Eng. 2016, 32, 223–226.
  • Idumah, C.; Hassan, A. Effect of Exfoliated Graphite Nanoplatelets on Thermal and Heat Deflection Properties of Kenaf Polypropylene Hybrid Nanocomposites. J. Polym. Eng. 2016, 36, 877–889.
  • Idumah, C.; Hassan, A. Emerging Trends in Eco-Compliant, Synergistic, and Hybrid Assembling of Multifunctional Polymeric Bionanocomposites. Rev. Chem. Eng. 2016, 32, 305–361.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Influence of Exfoliated Graphene Nanoplatelets on Flame Retardancy of Kenaf Flour Polypropylene Hybrid Nanocomposites. J. Anal. Appl. Pyrolysis. 2017, 123, 65–72.
  • Idumah, C.; Hassan, A. Hibiscus Cannabinus Fiber/PP Based Nano-Biocomposites Reinforced with Graphene Nanoplatelets. J. Nat. Fibers 2017, 14, 691–706.
  • Idumah, C. Emerging Advancements in Flame Retardancy of Polypropylene Nanocomposites. J. Therm. Compos. Mater. 2020.
  • Idumah, C.; Hassan, A.; Ogbu, J.; Ndem, J.; Oti, W.; Obiana, V. Electrical, Thermal and Flammabil-Ity Properties of Conductive Filler Kenaf Reinforced Polymer Nanocomposites. J. Thermo-Plast Compos. Mater. 2018, 089270571880795.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Synergistic Effect of Exfoliated Graphene Nanoplatelets and Non-Halogen Flame Retardants on Flame Retardancy and Thermal Properties of Kenaf Flour-PP Nanocomposites. J. Therm. Anal. Calorim. 2018, 134, 1681–1703.
  • Idumah, C.; Hassan, A.; Ihuoma, D. Recently Emerging Trends in Polymer Nanocomposites Packaging Materials. Polym-Plast Technol. Eng. 2018, 58, 1054–1109.
  • Idumah, C. Progress in Polymer Nanocomposites for Bone Regeneration and Engineering. Polym. Polym. Compos. 2020, 0967391120913658.
  • Idumah, C. Recent Advancements in Self-Healing Polymers, Polymer Blends, and Nanocomposites. Polym. Polym. Compos. 2020, 0967391120910882.
  • Idumah, C. I.; Odera, S. R. Recent Advancement in Self-Healing Graphene Polymer Nanocomposites, Shape Memory, and Coating Materials. Polym-Plast Technol Mater 2020, 59, 1167–1190.
  • Idumah, C. I.; Hassan, A.; Ogbu, J.; Ndem, J. U.; Nwuzor, I. C. Recently Emerging Advancements in Halloysite Nanotubes Polymer Nanocomposites. Compos. Interf. 2019, 26, 751–824.
  • Idumah, C.; Zurina, M.; Ogbu, J.; Ndem, J.; Igba, E. A Review on Innovations in Polymeric Nanocomposite Packaging Materials and Electrical Sensors for Food and Agriculture. Compos. Interf. 2020, 27, 1–7.
  • Idumah, C.; Hassan, A.; Ihuoma, E. Recently Emerging Trends in Polymer Nanocomposites Packaging Materials. Polym-Plast Technol. Mater. 2019, 58, 1054–1109.
  • Idumah, C. I. Novel Trends in Self-Healable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2019, 089270571984724.
  • Idumah, C. I.; Ogbu, J. E.; Ndem, J. U.; Obiana, V. Influence of Chemical Modification of Kenaf Fiber on xGNP-PP Nano-Biocomposites. SN Appl. Sci. 2019, 1, 1261.
  • Idumah, C. I.; Nwuzor, I. Novel Trends in Plastic Waste Management. SN Appl. Sci. 2019, 1, 1402.
  • Idumah, C.; Zurina, M.; Hassan, A.; Norhayani, O.; Shuhadah, I. Chapter 8 - Recently Emerging Trends in Bone Replacement Polymer Nanocomposites. Nanostruct. Polym. Compos. Biomed. Appl. 2019, 139–166.
  • Idumah, C. I.; Obele, M. C.; Ezeani, E. O. Understanding Interfacial Dispersions in Ecobenign Polymer Nano-Biocomposites. Polym. Plast. Technol. Mater. 2020.
  • Idumah, C.; Obele, C. M.; Ezeani, E. O.; Hassan, A. Recently Emerging Nanotechnological Advancements in Polymer Nanocomposite Coatings for Anti-Corrosion, Anti-Fouling and Self-Healing. Surf. Interf. 2020, 21, 100734.
  • Pati, F.; Jang, J.; Ha, D.-H.; Kim, S. W.; Rhie, J.-W.; Shim, J.-H.; Kim, D.-H.; Cho, D.-W. Printing Three-Dimensional Tissue Analogues with Decellularized Extracellular Matrix Bioink. Nat. Commun. 2014, 5, 3935.
  • Valencia Castro, L. E.; Pérez Martínez, C. J.; del Castillo Castro, T.; Castillo Ortega, M. M.; Encinas, J. C. Chemical Polymerization of Pyrrole in the Presence of L-Serine or L-Glutamic Acid: Electrically Controlled  Amoxicillin Release from Composite Hydrogel. J. Appl. Polym. Sci. 2015, 132, 41804.
  • Lee, Y.-Y.; Kang, H.-Y.; Gwon, S. H.; Choi, G. M.; Lim, S.-M.; Sun, J.-Y.; Joo, Y.-C. A Strain-Insensitive Stretchable Electronic Conductor: PEDOT:PSS/Acrylamide Organogels. Adv. Mater. 2016, 28, 1636–1643.
  • Darmanin, T.; Guittard, F. Wettability of Conducting Polymers: From Superhydrophilicity to Superoleophobicity. Prog. Polym. Sci. 2014, 39, 656–682.
  • Zhong, W.; Liu, S.; Chen, X.; Wang, Y.; Yang, W. High-Yield Synthesis of Superhydrophilic Polypyrrole Nanowire Networks. Macromolecules. 2006, 39, 3224–3230.
  • Zang, J.; Li, C. M.; Bao, S.-J.; Cui, X.; Bao, Q.; Sun, C. Q. Template-Free Electrochemical Synthesis of Superhydrophilic Polypyrrole Nanofiber Network. Macromolecules. 2008, 41, 7053–7057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.