332
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Bio-polymeric hydrogels for regeneration of corneal epithelial tissue*Footnote

, , , , , & show all
Pages 797-815 | Received 19 Jan 2021, Accepted 22 Mar 2021, Published online: 18 Apr 2021

References

  • Davanger, M.; Evensen, A. Role of the Pericorneal Papillary Structure in Renewal of Corneal Epithelium. Nature 1971, 229, 560–561. DOI: 10.1038/229560a0.
  • Meek, K. M.; Knupp, C. Corneal Structure and Transparency. Prog. Retin. Eye Res. 2015, 49, 1–16. DOI: 10.1016/j.preteyeres.2015.07.001.
  • Sridhar, M. S. Anatomy of Cornea and Ocular Surface. Indian J. Ophthalmol. 2018, 66, 190–194. DOI: 10.4103/ijo.IJO_646_17.
  • Dua, H. S.; Faraj, L. A.; Said, D. G.; Gray, T.; Lowe, J. Human Corneal Anatomy Redefined: A Novel pre-Descemet’s Layer (Dua’s Layer). Ophthalmology 2013, 120, 1778–1785. DOI: 10.1016/j.ophtha.2013.01.018.
  • Podskochy, A. Protective Role of Corneal Epithelium against Ultraviolet Radiation Damage. Acta Ophthalmol. Scand. 2004, 82, 714–717. DOI: 10.1111/j.1600-0420.2004.00369.x.
  • Spector, J.; Fernandez, W. G. Chemical, Thermal, and Biological Ocular Exposures. Emerg. Med. Clin. N. Am. 2008, 26, 125–136. DOI: 10.1016/j.emc.2007.11.002.
  • Reichert, R.; Stern, G. Quantitative Adherence of Bacteria to Human Corneal Epithelial Cells. Arch. Ophthalmol. 1984, 102, 1394–1395. DOI: 10.1001/archopht.1984.01040031136041.
  • Chen, Y.-T.; Huang, C.-W.; Huang, F.-C.; Tseng, S.-Y.; Tseng, S.-H. The Cleavage Plane of Corneal Epithelial Adhesion Complex in Traumatic Recurrent Corneal Erosion. Mol. Vis. 2006, 12, 196–204.
  • Lu, L.; Reinach, P. S.; Kao, W. W. Y. Corneal Epithelial Wound Healing. Exp. Biol. Med. 2001, 226, 653–664. DOI: 10.1177/153537020222600711.
  • Yoon, J. J.; Ismail, S.; Sherwin, T. Limbal Stem Cells: Central Concepts of Corneal Epithelial Homeostasis. World J. Stem Cells. 2014, 6, 391–403. DOI: 10.4252/wjsc.v6.i4.391.
  • Singh, P.; Tyagi, M.; Kumar, Y.; Gupta, K. K.; Sharma, P. D. Ocular Chemical Injuries and Their Management. Oman J. Ophthalmol. 2013, 6, 83. DOI: 10.4103/0974-620X.116624.
  • Fagerholm, P. Wound Healing after Photorefractive Keratectomy. J. Cataract Refract. Surg. 2000, 26, 432–447. DOI: 10.1016/S0886-3350(99)00436-8.
  • Choi, J. S.; Joo, C. K. Wakayama Symposium: New Therapies for Modulation of Epithelialization in Corneal Wound Healing. Ocul. Surf. 2013, 11, 16–18. DOI: 10.1016/j.jtos.2012.08.006.
  • Bazan, H. E. Cellular and Molecular Events in Corneal Wound Healing: Significance of Lipid Signalling. Exp. Eye Res. 2005, 80, 453–463. DOI: 10.1016/j.exer.2004.12.023.
  • Tan, D. T. H.; Dart, J. K. G.; Holland, E. J.; Kinoshita, S. Corneal Transplantation. Lancet 2012, 379, 1749–1761. DOI: 10.1016/S0140-6736(12)60437-1.
  • Pleyer, U.; Schlickeiser, S. The Taming of the Shrew? The Immunology of Corneal Transplantation. Acta Ophthalmol. 2009, 87, 488–497. DOI: 10.1111/j.1755-3768.2009.01596.x.
  • Momenzadeh, D.; Baradaran-Rafii, A.; Keshel, S. H.; Ebrahimi, M.; Biazar, E. Electrospun Mat with Eyelid Fat-Derived Stem Cells as a Scaffold for Ocular Epithelial Regeneration. Artif. Cells. Nanomed. Biotechnol. 2017, 45, 120–127. DOI: 10.3109/21691401.2016.1138483.
  • Conto, J. E. A Review of Limbal Stem Cell Deficiency. J. Dry Eye Ocul. Surf. Dis. 2019, 2, e4–e11. DOI: 10.22374/jded.v2i1.18.
  • Mishan, M. A.; Yaseri, M.; Baradaran-Rafii, A.; et al. Systematic Review and Meta-Analysis Investigating Autograft versus Allograft Cultivated Limbal Epithelial Transplantation in Limbal Stem Cell Deficiency. Int. J. Ophthalmol. 2019, 1–12.
  • Eslani, M.; Baradaran-Rafii, A.; Ahmad, S. Cultivated Limbal and Oral Mucosal Epithelial Transplantation. Semin. Ophthalmol. 2012, 27, 80–93. DOI: 10.3109/08820538.2012.680641.
  • Eslani, M.; Baradaran-Rafii, A.; Cheung, A. Y.; Kurji, K. H.; Hasani, H.; Djalilian, A. R.; Holland, E. J. Amniotic Membrane Transplantation in Acute Severe Ocular Chemical Injury: A Randomized Clinical Trial. Am. J. Ophthalmol. 2019, 199, 209–215. DOI: 10.1016/j.ajo.2018.11.001.
  • Arrizabalaga, J. H.; Nollert, M. U. Human Amniotic Membrane: A Versatile Scaffold for Tissue Engineering. ACS Biomater. Sci. Eng. 2018, 4, 2226–2236. DOI: 10.1021/acsbiomaterials.8b00015.
  • Ramuta, T. Ž.; Kreft, M. E. Human Amniotic Membrane and Amniotic Membrane-Derived Cells: How Far Are We from Their Use in Regenerative and Reconstructive Urology? Cell Transplant. 2018, 27, 77–92. DOI: 10.1177/0963689717725528.
  • El-Ayoubi, R.; DeGrandpré, C.; DiRaddo, R.; Yousefi, A.-M.; Lavigne, P. Design and Dynamic Culture of 3D-Scaffolds for Cartilage Tissue Engineering. J. Biomater. Appl. 2011, 25, 429–444. DOI: 10.1177/0885328209355332.
  • Biazar, E. Application of Polymeric Nanofibers in Medical Designs, Part III: Musculoskeletal and Urological Tissues. Int. J. Polym. Mater. B. 2017, 66, 28–37. DOI: 10.1080/00914037.2016.1180620.
  • Biazar, E. Application of Polymeric Nanofibers in Medical Designs (Part IV: Drug and Biological Materials Delivery). Int. J. Polym. Mater. B. 2017, 66, 53–60. DOI: 10.1080/00914037.2016.1180621.
  • Biazar, E. Application of Polymeric Nanofibers in Medical Designs (Part II; Neural and Cardiovascular Tissues). Int. J. Polym. Mater. B. 2016, 65, 957–970. DOI: 10.1080/00914037.2016.1180619.
  • Biazar, E. Application of Polymeric Nanofibers in Medical Designs (Part I; Skin and Eye). Int. J. Polym. Mater. B. 2017, 66, 521–531. DOI: 10.1080/00914037.2016.1276062.
  • Biazar, E. Application of Polymeric Nanofibers in Soft Tissues Regeneration. Polym. Adv. Technol. 2016, 27, 1404–1412. DOI: 10.1002/pat.3820.
  • Ju, H. K.; Kim, S. Y.; Kim, S. J.; Lee, Y. M. pH/Temperature‐Responsive Semi‐IPN Hydrogels Composed of Alginate and Poly (N‐Isopropylacrylamide). J. Appl. Polym. Sci. 2002, 83, 1128–1139. DOI: 10.1002/app.10137.
  • Short, A. R.; Koralla, D.; Deshmukh, A.; Wissel, B.; Stocker, B.; Calhoun, M.; Dean, D.; Winter, J. O. Hydrogels That Allow and Facilitate Bone Repair, Remodeling, and Regeneration. J. Mater. Chem. B. 2015, 3, 7818–7830. DOI: 10.1039/C5TB01043H.
  • Zuo, Y.; Liu, X.; Wei, D.; Sun, J.; Xiao, W.; Zhao, H.; Guo, L.; Wei, Q.; Fan, H.; Zhang, X.; et al. Photo-Cross-Linkable Methacrylated Gelatin and Hydroxyapatite Hybrid Hydrogel for Modularly Engineering Biomimetic Osteon. ACS Appl. Mater. Interfaces 2015, 7, 10386–10394. DOI: 10.1021/acsami.5b01433.
  • Parke-Houben, R.; Fox, C. H.; Zheng, L. L.; Waters, D. J.; Cochran, J. R.; Ta, C. N.; Frank, C. W. Interpenetrating Polymer Network Hydrogel Scaffolds for Artificial Cornea Periphery. J. Mater. Sci. Mater. Med. 2015, 26, 107. DOI: 10.1007/s10856-015-5442-2.
  • Hoare, T. R.; Kohane, D. S. Hydrogels in Drug Delivery: Progress and Challenges. Polymer 2008, 49, 1993–2007. DOI: 10.1016/j.polymer.2008.01.027.
  • Moreau, D.; Chauvet, C.; Etienne, F.; Rannou, F. P.; Corté, L. Hydrogel Films and Coatings by Swelling-Induced Gelation. Proc. Natl. Acad. Sci. USA. 2016, 113, 13295–13300. DOI: 10.1073/pnas.1609603113.
  • Geggel, H. S.; Friend, J.; Thoft, R. A. Collagen Gel for Ocular Surface. Investig. Ophthalmol. Vis. Sci. 1985, 26, 901–905.
  • Merrett, K.; Fagerholm, P.; McLaughlin, C. R.; Dravida, S.; Lagali, N.; Shinozaki, N.; Watsky, M. A.; Munger, R.; Kato, Y.; Li, F.; et al. Tissue-Engineered Recombinant Human Collagen-Based Corneal Substitutes for Implantation: Performance of Type I versus Type III Collagen. Invest. Ophthalmol. Vis. Sci. 2008, 49, 3887–3894. DOI: 10.1167/iovs.07-1348.
  • Fagerholm, P.; Lagali, N. S.; Merrett, K.; Jackson, W. B.; Munger, R.; Liu, Y.; Polarek, J. W.; Söderqvist, M.; Griffith, M. A Biosynthetic Alternative to Human Donor Tissue for Inducing Corneal Regeneration: 24-Month Follow-up of a Phase 1 Clinical Study. Sci. Transl. Med. 2010, 2, 46ra61. DOI: 10.1126/scitranslmed.3001022.
  • Liu, W.; Deng, C.; McLaughlin, C. R.; Fagerholm, P.; Lagali, N. S.; Heyne, B.; Scaiano, J. C.; Watsky, M. A.; Kato, Y.; Munger, R.; et al. Collagen-Phosphorylcholine Interpenetrating Network Hydrogels As Corneal Substitutes. Biomaterials 2009, 30, 1551–1559. DOI: 10.1016/j.biomaterials.2008.11.022.
  • Hackett, J. M.; Lagali, N.; Merrett, K.; Edelhauser, H.; Sun, Y.; Gan, L.; Griffith, M.; Fagerholm, P. Biosynthetic Corneal Implants for Replacement of Pathologic Corneal Tissue: Performance in a Controlled Rabbit Alkali Burn Model. Invest. Ophthalmol. Vis. Sci. 2011, 52, 651–657. DOI: 10.1167/iovs.10-5224.
  • Islam, M. M.; Buznyk, O.; Reddy, J. C.; Pasyechnikova, N.; Alarcon, E. I.; Hayes, S.; Lewis, P.; Fagerholm, P.; He, C.; Iakymenko, S.; et al. Biomaterials-Enabled Cornea Regeneration in Patients at High Risk for Rejection of Donor Tissue Transplantation. NPJ. Regen. Med. 2018, 3, 2–10. DOI: 10.1038/s41536-017-0038-8.
  • Holzer, M. P.; Rabsilber, T. M.; Auffarth, G. U. Femtosecond Laser-Assisted Corneal Flap Cuts: Morphology, Accuracy, and Histopathology. Invest. Ophthalmol. Vis. Sci. 2006, 47, 2828–2831. DOI: 10.1167/iovs.05-1123.
  • Mirazul Islam, M.; Cėpla, V.; He, C.; Edin, J.; Rakickas, T.; Kobuch, K.; Ruželė, Ž.; Bruce Jackson, W.; Rafat, M.; Lohmann, C. P.; et al. Functional Fabrication of Recombinant Human Collagen-Phosphorylcholine Hydrogels for Regenerative Medicine Applications. Acta Biomater. 2015, 12, 70–80. DOI: 10.1016/j.actbio.2014.10.035.
  • Bentley, E.; Murphy, C. J.; Li, F.; Carlsson, D. J.; Griffith, M. Biosynthetic Corneal Substitute Implantation in Dogs. Cornea 2010, 29, 910–916. DOI: 10.1097/ICO.0b013e3181c846aa.
  • Rafat, M.; Xeroudaki, M.; Koulikovska, M.; Sherrell, P.; Groth, F.; Fagerholm, P.; Lagali, N. Composite Core-and-Skirt Collagen Hydrogels with Differential Degradation for Corneal Therapeutic Applications. Biomaterials 2016, 83, 142–155. DOI: 10.1016/j.biomaterials.2016.01.004.
  • Liu, Y.; Ren, L.; Wang, Y. A Novel Collagen Film with Micro-Rough Surface Structure for Corneal Epithelial Repair Fabricated by Freeze Drying Technique. Appl. Surf. Sci. 2014, 301, 396–400. DOI: 10.1016/j.apsusc.2014.02.089.
  • Liu, Y.; Liu, X.; Wu, M.; Ji, P.; Lv, H.; Deng, L. A Collagen Film with Micro-Rough Surface Can Promote the Corneal Epithelization Process for Corneal Repair. Int. J. Biol. Macromol. 2019, 121, 233–238. DOI: 10.1016/j.ijbiomac.2018.10.026.
  • Biazar, E.; Momenzadeh, D.; Keshel, S. H.; Yousefi, F.; Shabanian, M.; Sefidabi, F.; Sheikholeslami, M. Solvent Effect in Phase Separation for Fabrication of Micropatterned Porous Scaffold Sheets. Int. J. Polym. Mater. 2016, 65, 351–357. DOI: 10.1080/00914037.2015.1119691.
  • Thompson, D. M.; Buettner, H. M. Schwann Cell Response to Micropatterned Laminin Surfaces. Tissue Eng. 2001, 7, 247–265. DOI: 10.1089/10763270152044125.
  • Kotani, H.; Iwasaka, M.; Ueno, S.; Curtis, A. Magnetic Orientation of Collagen and Bone Mixture. J. Appl. Phys. 2000, 87, 6191–6193. DOI: 10.1063/1.372652.
  • Builles, N.; Janin-Manificat, H.; Malbouyres, M.; Justin, V.; Rovère, M.-R.; Pellegrini, G.; Torbet, J.; Hulmes, D. J. S.; Burillon, C.; Damour, O.; et al. Use of Magnetically Oriented Orthogonal Collagen Scaffolds for Hemi-Corneal Reconstruction and Regeneration. Biomaterials 2010, 31, 8313–8322. DOI: 10.1016/j.biomaterials.2010.07.066.
  • Koulikovska, M.; Rafat, M.; Petrovski, G.; Veréb, Z.; Akhtar, S.; Fagerholm, P.; Lagali, N. Enhanced Regeneration of Corneal Tissue via a Bioengineered Collagen Construct Implanted by a Nondisruptive Surgical Technique. Tissue Eng. Part A. 2015, 21, 1116–1130. DOI: 10.1089/ten.tea.2014.0562.
  • Liu, Y.; Lv, H.; Ren, L.; Xue, G.; Wang, Y. Improving the Moisturizing Properties of Collagen Film by Surface Grafting of Chondroitin Sulfate for Corneal Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2016, 27, 758–772. DOI: 10.1080/09205063.2016.1160561.
  • Muzzarelli, R. A. Genipin-Crosslinked Chitosan Hydrogels as Biomedical and Pharmaceutical Aids. Carbohydr. Polym. 2009, 77, 1–9. DOI: 10.1016/j.carbpol.2009.01.016.
  • Kong, M.; Chen, X. G.; Xing, K.; Park, H. J. Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review. Int. J. Food Microbiol. 2010, 144, 51–63. DOI: 10.1016/j.ijfoodmicro.2010.09.012.
  • Rafat, M.; Li, F.; Fagerholm, P.; Lagali, N. S.; Watsky, M. A.; Munger, R.; Matsuura, T.; Griffith, M. PEG-Stabilized Carbodiimide Crosslinked Collagen-Chitosan Hydrogels for Corneal Tissue Engineering. Biomaterials 2008, 29, 3960–3972. DOI: 10.1016/j.biomaterials.2008.06.017.
  • Li, W.; Long, Y.; Liu, Y.; Long, K.; Liu, S.; Wang, Z.; Wang, Y.; Ren, L. Fabrication and Characterization of Chitosan-Collagen Crosslinked Membranes for Corneal Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2014, 25, 1962–1972. DOI: 10.1080/09205063.2014.965996.
  • Grolik, M.; Szczubiałka, K.; Wowra, B.; Dobrowolski, D.; Orzechowska-Wylęgała, B.; Wylęgała, E.; Nowakowska, M. Hydrogel Membranes Based on Genipin-Cross-Linked Chitosan Blends for Corneal Epithelium Tissue Engineering. J. Mater. Sci. Mater. Med. 2012, 23, 1991–2000. DOI: 10.1007/s10856-012-4666-7.
  • Takezawa, T.; Nitani, A.; Shimo-Oka, T.; Takayama, Y. A Protein-Permeable Scaffold of a Collagen Vitrigel Membrane Useful for Reconstructing Crosstalk Models between Two Different Cell Types. Cell. Tiss. Organs 2007, 185, 237–241. DOI: 10.1159/000101325.
  • Chae, J. J.; McIntosh Ambrose, W.; Espinoza, F. A.; Mulreany, D. G.; Ng, S.; Takezawa, T.; Trexler, M. M.; Schein, O. D.; Chuck, R. S.; Elisseeff, J. H.; et al. Regeneration of Corneal Epithelium Utilizing a Collagen Vitrigel Membrane in Rabbit Models for Corneal Stromal Wound and Limbal Stem Cell Deficiency. Acta Ophthalmol. 2015, 93, e57–e66. DOI: 10.1111/aos.12503.
  • Rubert Pérez, C. M.; Stephanopoulos, N.; Sur, S.; Lee, S. S.; Newcomb, C.; Stupp, S. I. The Powerful Functions of Peptide-Based Bioactive Matrices for Regenerative Medicine. Ann. Biomed. Eng. 2015, 43, 501–514. DOI: 10.1007/s10439-014-1166-6.
  • Capito, R. M.; Mata, A.; Stupp, S. I. Self‐Assembling Peptide‐Based Nanostructures for Regenerative Medicine. Nanotechnol. Online 2010, 385–412.
  • Islam, M. M.; Ravichandran, R.; Olsen, D.; Ljunggren, M. K.; Fagerholm, P.; Lee, C. J.; Griffith, M.; Phopase, J. Self-Assembled Collagen-like-Peptide Implants as Alternatives to Human Donor Corneal Transplantation. RSC Adv. 2016, 6, 55745–55749. DOI: 10.1039/C6RA08895C.
  • Jangamreddy, J. R.; Haagdorens, M. K. C.; Mirazul Islam, M.; Lewis, P.; Samanta, A.; Fagerholm, P.; Liszka, A.; Ljunggren, M. K.; Buznyk, O.; Alarcon, E. I.; et al. Short Peptide Analogs as Alternatives to Collagen in Pro-Regenerative Corneal Implants. Acta Biomater. 2018, 69, 120–130. DOI: 10.1016/j.actbio.2018.01.011.
  • Harkin, D. G.; George, K. A.; Madden, P. W.; Schwab, I. R.; Hutmacher, D. W.; Chirila, T. V. Silk Fibroin in Ocular Tissue Reconstruction. Biomaterials 2011, 32, 2445–2458. DOI: 10.1016/j.biomaterials.2010.12.041.
  • Bray, L. J.; George, K. A.; Ainscough, S. L.; Hutmacher, D. W.; Chirila, T. V.; Harkin, D. G. Human Corneal Epithelial Equivalents Constructed on Bombyx mori Silk Fibroin Membranes. Biomaterials 2011, 32, 5086–5091. DOI: 10.1016/j.biomaterials.2011.03.068.
  • Bray, L. J.; George, K. A.; Hutmacher, D. W.; Chirila, T. V.; Harkin, D. G. A Dual-Layer Silk Fibroin Scaffold for Reconstructing the Human Corneal Limbus. Biomaterials 2012, 33, 3529–3538. DOI: 10.1016/j.biomaterials.2012.01.045.
  • Liu, J.; Lawrence, B. D.; Liu, A.; Schwab, I. R.; Oliveira, L. A.; Rosenblatt, M. I. Silk Fibroin as a Biomaterial Substrate for Corneal Epithelial Cell Sheet Generation. Invest. Ophthalmol. Vis. Sci. 2012, 53, 4130–4138. DOI: 10.1167/iovs.12-9876.
  • Hazra, S.; Nandi, S.; Naskar, D.; Guha, R.; Chowdhury, S.; Pradhan, N.; Kundu, S. C.; Konar, A. Non-Mulberry Silk Fibroin Biomaterial for Corneal Regeneration. Sci. Rep. 2016, 6, 21840. DOI: 10.1038/srep21840.
  • Guan, L.; Ge, H.; Tang, X.; Su, S.; Tian, P.; Xiao, N.; Zhang, H.; Zhang, L.; Liu, P. Use of a Silk Fibroin-Chitosan Scaffold to Construct a Tissue-Engineered Corneal Stroma. Cell. Tiss. Organs 2013, 198, 190–197. DOI: 10.1159/000355944.
  • Long, K.; Liu, Y.; Li, W.; Wang, L.; Liu, S.; Wang, Y.; Wang, Z.; Ren, L. Improving the Mechanical Properties of Collagen-Based Membranes Using Silk Fibroin for Corneal Tissue Engineering. J. Biomed. Mater. Res. A. 2015, 103, 1159–1168. DOI: 10.1002/jbm.a.35268.
  • Li, Y.; Yang, Y.; Yang, L.; et al. Poly (Ethylene Glycol)-Modified Silk Fibroin Membrane as a Carrier for Limbal Epithelial Stem Cell Transplantation in a Rabbit LSCD Model. Curr. Stem Cell Res. Ther. 2017, 8, 256. DOI: 10.1186/s13287-017-0707-y.
  • Wang, L.; Ma, R.; Du, G.; Guo, H.; Huang, Y. Biocompatibility of Helicoidal Multilamellar Arginine–Glycine–Aspartic Acid‐Functionalized Silk Biomaterials in a Rabbit Corneal Model. J. Biomed. Mater. Res. 2015, 103, 204–211. DOI: 10.1002/jbm.b.33192.
  • Verma, V.; Verma, P.; Ray, P.; Ray, A. R. Preparation of Scaffolds from Human Hair Proteins for Tissue-Engineering Applications. Biomed. Mater. 2008, 3, 025007. DOI: 10.1088/1748-6041/3/2/025007.
  • Joepen, N.; Borelli, M.; Feng, Y.; et al. Keratin Films in Ocular Surface Reconstruction. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3900–3900.
  • Borrelli, M.; Reichl, S.; Feng, Y.; et al. Keratin Films in Ocular Surface Reconstruction: Preliminary Results of a Rabbit in Vivo-Model. Invest. Ophthalmol. Vis. Sci. 2012, 53, 3563–3563.
  • Hill, P.; Brantley, H.; Van Dyke, M. Some Properties of Keratin Biomaterials: Kerateines. Biomaterials 2010, 31, 585–593. DOI: 10.1016/j.biomaterials.2009.09.076.
  • Borrelli, M.; Reichl, S.; Feng, Y.; Schargus, M.; Schrader, S.; Geerling, G. In Vitro Characterization and Ex Vivo Surgical Evaluation of Human Hair Keratin Films in Ocular Surface Reconstruction after Sterilization Processing. J. Mater. Sci. Mater. Med. 2013, 24, 221–230. DOI: 10.1007/s10856-012-4774-4.
  • Grolik, M.; Kopeć, M.; Szczubiałka, K.; et al. Regeneration of Corneal Epithelium Using Keratin Modified Chitosan Membranes. Prz. Lek. 2012, 69, 992–997.
  • Chircov, C.; Grumezescu, A. M.; Bejenaru, L. E. Hyaluronic Acid-Based Scaffolds for Tissue Engineering. Rom. J. Morphol. Embryol. 2018, 59, 71–76.
  • Lindborg, B. A.; Brekke, J. H.; Scott, C. M.; Chai, Y. W.; Ulrich, C.; Sandquist, L.; Kokkoli, E.; O’Brien, T. D. A Chitosan-Hyaluronan-Based Hydrogel-Hydrocolloid Supports in Vitro Culture and Differentiation of Human Mesenchymal Stem/Stromal Cells. Tissue Eng. Part A. 2015, 21, 1952–1962. DOI: 10.1089/ten.TEA.2014.0335.
  • Gaetani, R.; Feyen, D. A. M.; Verhage, V.; Slaats, R.; Messina, E.; Christman, K. L.; Giacomello, A.; Doevendans, P. A. F. M.; Sluijter, J. P. G. Epicardial Application of Cardiac Progenitor Cells in a 3D-Printed Gelatin/Hyaluronic Acid Patch Preserves Cardiac Function after Myocardial Infarction. Biomaterials 2015, 61, 339–348. DOI: 10.1016/j.biomaterials.2015.05.005.
  • Chen, D.; Qu, Y.; Hua, X.; Zhang, L.; Liu, Z.; Pflugfelder, S. C.; Li, D.-Q. A Hyaluronan Hydrogel Scaffold-Based Xeno-Free Culture System for Ex Vivo Expansion of Human Corneal Epithelial Stem Cells. Eye 2017, 31, 962–971. DOI: 10.1038/eye.2017.8.
  • Yang, G.; Espandar, L.; Mamalis, N.; Prestwich, G. D. A Cross-Linked Hyaluronan Gel Accelerates Healing of Corneal Epithelial Abrasion and Alkali Burn Injuries in Rabbits. Vet. Ophthalmol. 2010, 13, 144–150. DOI: 10.1111/j.1463-5224.2010.00771.x.
  • Chen, J.; Li, Q.; Xu, J.; Huang, Y.; Ding, Y.; Deng, H.; Zhao, S.; Chen, R. Study on Biocompatibility of Complexes of Collagen-Chitosan-Sodium Hyaluronate and Cornea. Artif. Organs. 2005, 29, 104–113. DOI: 10.1111/j.1525-1594.2005.29021.x.
  • Bouten, P. J. M.; Zonjee, M.; Bender, J.; Yauw, S. T. K.; van Goor, H.; van Hest, J. C. M.; Hoogenboom, R. The Chemistry of Tissue Adhesive Materials. Prog. Polym. Sci. 2014, 39, 1375–1405. DOI: 10.1016/j.progpolymsci.2014.02.001.
  • Shin, J.; Lee, J. S.; Lee, C.; Park, H.-J.; Yang, K.; Jin, Y.; Ryu, J. H.; Hong, K. S.; Moon, S.-H.; Chung, H.-M.; et al. Tissue Adhesive Catechol‐Modified Hyaluronic Acid Hydrogel for Effective, Minimally Invasive Cell Therapy. Adv. Funct. Mater. 2015, 25, 3814–3824. DOI: 10.1002/adfm.201500006.
  • Koivusalo, L.; Kauppila, M.; Samanta, S.; Parihar, V. S.; Ilmarinen, T.; Miettinen, S.; Oommen, O. P.; Skottman, H. Tissue Adhesive Hyaluronic Acid Hydrogels for Sutureless Stem Cell Delivery and Regeneration of Corneal Epithelium and Stroma. Biomaterials 2019, 225, 119516. DOI: 10.1016/j.biomaterials.2019.119516.
  • Gronkiewicz, K. M.; Giuliano, E. A.; Sharma, A.; Mohan, R. R. Effects of Topical Hyaluronic Acid on Corneal Wound Healing in Dogs: A Pilot study. Vet. Ophthalmol. 2017, 20, 123–130. DOI: 10.1111/vop.12379.
  • Griffith, G. L.; Wirostko, B.; Lee, H.-K.; Cornell, L. E.; McDaniel, J. S.; Zamora, D. O.; Johnson, A. J. Treatment of Corneal Chemical Alkali Burns with a Crosslinked Thiolated Hyaluronic Acid Film. Burns 2018, 44, 1179–1186. DOI: 10.1016/j.burns.2018.01.016.
  • Xu, W.; Wang, Z.; Liu, Y.; Wang, L.; Jiang, Z.; Li, T.; Zhang, W.; Liang, Y. Carboxymethyl Chitosan/Gelatin/Hyaluronic Acid Blended-Membranes as Epithelia Transplanting Scaffold for Corneal Wound Healing. Carbohydr. Polym. 2018, 192, 240–250. DOI: 10.1016/j.carbpol.2018.03.033.
  • Rama, P.; Matuska, S.; Paganoni, G.; Spinelli, A.; De Luca, M.; Pellegrini, G. Limbal Stem-Cell Therapy and Long-Term Corneal Regeneration. N. Engl. J. Med. 2010, 363, 147–155. DOI: 10.1056/NEJMoa0905955.
  • Fasolo, A.; Pedrotti, E.; Passilongo, M.; Marchini, G.; Monterosso, C.; Zampini, R.; Bohm, E.; Birattari, F.; Franch, A.; Barbaro, V.; et al. Safety Outcomes and Long-Term Effectiveness of Ex Vivo Autologous Cultured Limbal Epithelial Transplantation for Limbal Stem Cell Deficiency. Br. J. Ophthalmol. 2017, 101, 640–649. DOI: 10.1136/bjophthalmol-2015-308272.
  • Alaminos, M.; Sánchez-Quevedo, M. D. C.; Mun ∼ Oz-ÁVila, J. I.; Serrano, D.; Medialdea, S.; Carreras, I.; Campos, A. Construction of a Complete Rabbit Cornea Substitute Using a Fibrin-Agarose Scaffold. Invest. Ophthalmol. Vis. Sci. 2006, 47, 3311–3317. DOI: 10.1167/iovs.05-1647.
  • González-Andrades, M.; Mata, R.; del Carmen González-Gallardo, M.; et al. A Study Protocol for a Multicentre Randomised Clinical Trial Evaluating the Safety and Feasibility of a Bioengineered Human Allogeneic Nanostructured Anterior Cornea in Patients with Advanced Corneal Trophic Ulcers Refractory to Conventional Treatment. Br. Med. J 2017, 7, 016487.
  • Rico‐Sánchez, L.; Garzón, I.; González‐Andrades, M.; Ruíz‐García, A.; Punzano, M.; Lizana‐Moreno, A.; Muñoz‐Ávila, J. I.; Sánchez‐Quevedo, M. d. C.; Martínez‐Atienza, J.; Lopez‐Navas, L.; et al. Successful Development and Clinical Translation of a Novel Anterior Lamellar Artificial Cornea. J. Tissue Eng. Regen. Med. 2019, 13, 2142–2154. DOI: 10.1002/term.2951.
  • Biazar, E.; Najafi S, M.; Heidari K, S.; Yazdankhah, M.; Rafiei, A.; Biazar, D. 3D Bio-Printing Technology for Body Tissues and Organs Regeneration. J. Med. Eng. Technol. 2018, 42, 187–202. DOI: 10.1080/03091902.2018.1457094.
  • Ghezzi, C. E.; Rnjak-Kovacina, J.; Kaplan, D. L. Corneal Tissue Engineering: Recent Advances and Future Perspectives. Tissue Eng. Part B. Rev. 2015, 21, 278–287. DOI: 10.1089/ten.TEB.2014.0397.
  • Roshandel, D.; Eslani, M.; Baradaran-Rafii, A.; Cheung, A. Y.; Kurji, K.; Jabbehdari, S.; Maiz, A.; Jalali, S.; Djalilian, A. R.; Holland, E. J.; et al. Current and Emerging Therapies for Corneal Neovascularization. Ocul. Surf. 2018, 16, 398–414. DOI: 10.1016/j.jtos.2018.06.004.
  • Hong, N.; Yang, G.-H.; Lee, J.; Kim, G. 3D Bioprinting and Its in Vivo Applications. J. Biomed. Mater. Res. 2018, 106, 444–459. DOI: 10.1002/jbm.b.33826.
  • Ong, C. S.; Yesantharao, P.; Huang, C. Y.; Mattson, G.; Boktor, J.; Fukunishi, T.; Zhang, H.; Hibino, N. 3D Bioprinting Using Stem Cells. Pediatr. Res. 2018, 83, 223–231. DOI: 10.1038/pr.2017.252.
  • Mannoor, M. S.; Jiang, Z.; James, T.; Kong, Y. L.; Malatesta, K. A.; Soboyejo, W. O.; Verma, N.; Gracias, D. H.; McAlpine, M. C. 3D Printed Bionic Ears. Nano Lett. 2013, 13, 2634–2639. DOI: 10.1021/nl4007744.
  • Hollister, S. J. Porous Scaffold Design for Tissue Engineering. Nat. Mater. 2005, 4, 518–524. DOI: 10.1038/nmat1421.
  • Hutmacher, D. W. Scaffolds in Tissue Engineering Bone and Cartilage. Biomaterials 2000, 21, 2529–2189. DOI: 10.1016/S0142-9612(00)00121-6.
  • Reiffel, A. J.; Kafka, C.; Hernandez, K. A.; Popa, S.; Perez, J. L.; Zhou, S.; Pramanik, S.; Brown, B. N.; Ryu, W. S.; Bonassar, L. J.; et al. High-Fidelity Tissue Engineering of Patient-Specific Auricles for Reconstruction of Pediatric Microtia and Other Auricular Deformities. PLoS One. 2013, 8, e56506. DOI: 10.1371/journal.pone.0056506.
  • Cohen, D. L.; Malone, E.; Lipson, H.; Bonassar, L. J. Direct Freeform Fabrication of Seeded Hydrogels in Arbitrary Geometries. Tissue Eng. 2006, 12, 1325–1335. DOI: 10.1089/ten.2006.12.1325.
  • Mironov, V.; Visconti, R. P.; Kasyanov, V.; Forgacs, G.; Drake, C. J.; Markwald, R. R. Organ Printing: Tissue Spheroids as Building Blocks. Biomaterials 2009, 30, 2164–2174. DOI: 10.1016/j.biomaterials.2008.12.084.
  • Norotte, C.; Marga, F. S.; Niklason, L. E.; Forgacs, G. Scaffold-Free Vascular Tissue Engineering Using Bioprinting. Biomaterials 2009, 30, 5910–5917. DOI: 10.1016/j.biomaterials.2009.06.034.
  • Derby, B. Printing and Prototyping of Tissues and Scaffolds. Science 2012, 338, 921–926. DOI: 10.1126/science.1226340.
  • Ferris, C. J.; Gilmore, K. G.; Wallace, G. G.; In Het Panhuis, M. Biofabrication: An Overview of the Approaches Used for Printing of Living Cells. Appl. Microbiol. Biotechnol. 2013, 97, 4243–4258. DOI: 10.1007/s00253-013-4853-6.
  • Zhao, Y.; Yao, R.; Ouyang, L.; Ding, H.; Zhang, T.; Zhang, K.; Cheng, S.; Sun, W. Three-Dimensional Printing of Hela Cells for Cervical Tumor Model in Vitro. Biofabrication 2014, 6, 035001. DOI: 10.1088/1758-5082/6/3/035001.
  • Wu, Z.; Su, X.; Xu, Y.; Kong, B.; Sun, W.; Mi, S. Bioprinting Three-Dimensional Cell-Laden Tissue Constructs With Controllable Degradation. Sci. Rep. 2016, 6, 24474. DOI: 10.1038/srep24474.
  • Sorkio, A.; Koch, L.; Koivusalo, L.; Deiwick, A.; Miettinen, S.; Chichkov, B.; Skottman, H. Human Stem Cell Based Corneal Tissue Mimicking Structures Using Laser-Assisted 3D Bioprinting and Functional Bioinks. Biomaterials 2018, 171, 57–71. DOI: 10.1016/j.biomaterials.2018.04.034.
  • Lee, J. H. Injectable Hydrogels Delivering Therapeutic Agents for Disease Treatment and Tissue Engineering. Biomater. Res. 2018, 22, 1–14.
  • Liang, K.; Bae, K. H.; Kurisawa, M. Recent Advances in the Design of Injectable Hydrogels for Stem Cell-Based Therapy. J. Mater. Chem. B. 2019, 7, 3775–3791. DOI: 10.1039/C9TB00485H.
  • Coura, C. O.; de Araújo, I. W. F.; Vanderlei, E. S. O.; Rodrigues, J. A. G.; Quinderé, A. L. G.; Fontes, B. P.; de Queiroz, I. N. L.; de Menezes, D. B.; Bezerra, M. M.; e Silva, A. A. R.; et al. Antinociceptive and Anti-Inflammatory Activities of Sulphated Polysaccharides from the Red Seaweed Gracilaria cornea. Basic Clin. Pharmacol. Toxicol. 2012, 110, 335–341. DOI: 10.1111/j.1742-7843.2011.00811.x.
  • Yang, L.; Wang, Y.; Zhou, Q.; Chen, P.; Wang, Y.; Wang, Y.; Liu, T.; Xie, L. Inhibitory Effects of Polysaccharide Extract from Spirulina Platensis on Corneal Neovascularization. Mol. Vis. 2009, 15, 1951–1961.
  • Rodrigues, J. A. G.; Vanderlei, E. d S. O.; Silva, L. M. C. M.; de Araújo, I. W. F.; de Queiroz, I. N. L.; de Paula, G. A.; Abreu, T. M.; Ribeiro, N. A.; Bezerra, M. M.; Chaves, H. V.; et al. Antinociceptive and anti-Inflammatory Activities of a Sulfated Polysaccharide Isolated from the Green Seaweed Caulerpa Cupressoides. Pharmacol. Rep. 2012, 64, 282–292. DOI: 10.1016/S1734-1140(12)70766-1.
  • Sheng, X.; Zhang, N.; Song, S.; Li, M.; Liang, H.; Zhang, Y.; Wang, Y.; Ji, A. Morphological Transformation and Proliferation of Rat Astrocytes as Induced by Sulfated Polysaccharides from the Sea Cucumber Stichopus japonicus. Neurosci. Lett. 2011, 503, 37–42. DOI: 10.1016/j.neulet.2011.08.003.
  • Ke, Y.; Wu, Y.; Cui, X.; Liu, X.; Yu, M.; Yang, C.; Li, X. Polysaccharide Hydrogel Combined with Mesenchymal Stem Cells Promotes the Healing of Corneal Alkali Burn in Rats. PLoS One. 2015, 10, e0119725. DOI: 10.1371/journal.pone.0119725.
  • Soiberman, U.; Kambhampati, S. P.; Wu, T.; Mishra, M. K.; Oh, Y.; Sharma, R.; Wang, J.; Al Towerki, A. E.; Yiu, S.; Stark, W. J.; et al. Subconjunctival Injectable Dendrimer-Dexamethasone Gel for the Treatment of Corneal Inflammation. Biomaterials 2017, 125, 38–53. DOI: 10.1016/j.biomaterials.2017.02.016.
  • Zarembinski, T. I.; Doty, N. J.; Erickson, I. E.; Srinivas, R.; Wirostko, B. M.; Tew, W. P. Thiolated Hyaluronan-Based Hydrogels Crosslinked Using Oxidized Glutathione: An Injectable Matrix Designed for Ophthalmic Applications. Acta Biomater. 2014, 10, 94–103. DOI: 10.1016/j.actbio.2013.09.029.
  • Fernandes-Cunha, G. M.; Na, K.-S.; Putra, I.; Lee, H. J.; Hull, S.; Cheng, Y.-C.; Blanco, I. J.; Eslani, M.; Djalilian, A. R.; Myung, D.; et al. Corneal Wound Healing Effects of Mesenchymal Stem Cell Secretome Delivered within a Viscoelastic Gel Carrier. Stem Cells Transl. Med. 2019, 8, 478–489. DOI: 10.1002/sctm.18-0178.
  • Abdel-Naby, W.; Cole, B.; Liu, A.; Liu, J.; Wan, P.; Schreiner, R.; Infanger, D. W.; Paulson, N. B.; Lawrence, B. D.; Rosenblatt, M. I.; et al. Treatment with Solubilized Silk-Derived Protein (SDP) Enhances Rabbit Corneal Epithelial Wound Healing. PLoS One. 2017, 12, e0188154. DOI: 10.1371/journal.pone.0188154.
  • Dangl, D.; Hornof, M.; Hoffer, M.; et al. In Vivo Evaluation of Ocular Residence Time of 124I-Labelled Thiolated Chitosan in Rabbits Using microPET Technology. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3689–3689.
  • Felice, F.; Zambito, Y.; Belardinelli, E.; Fabiano, A.; Santoni, T.; Di Stefano, R. Effect of Different Chitosan Derivatives on in Vitro Scratch Wound Assay: A Comparative Study. Int. J. Biol. Macromol. 2015, 76, 236–241. DOI: 10.1016/j.ijbiomac.2015.02.041.
  • Zhang, H.; Qadeer, A.; Chen, W. In Situ Gelable Interpenetrating Double Network Hydrogel Formulated from Binary Components: Thiolated Chitosan and Oxidized Dextran. Biomacromolecules 2011, 12, 1428–1437. DOI: 10.1021/bm101192b.
  • Fischak, C.; Klaus, R.; Werkmeister, R. M.; Hohenadl, C.; Prinz, M.; Schmetterer, L.; Garhöfer, G. Effect of Topically Administered chitosan-N-Acetylcysteine on Corneal Wound Healing in a Rabbit Model. J. Ophthalmol. 2017, 2017, 1–6. DOI: 10.1155/2017/5192924.
  • Bandeira, F.; Goh, T. W.; Setiawan, M.; et al. Cellular Therapy of Corneal Epithelial Defect by Adipose Mesenchymal Stem Cell-Derived Epithelial Progenitors. Stem Cell Res. Ther. 2020, 11, 1–13.
  • Bi, X.; Liang, A. In Situ-Forming Cross-Linking Hydrogel Systems: Chemistry and Biomedical Applications. Emerg. Concepts Anal. Appl. Hydrogels 2016, 86, 541–547.
  • Ruel-Gariepy, E.; Leroux, J. C. In Situ-Forming Hydrogels—Review of Temperature-Sensitive Systems. Eur. J. Pharm. Biopharm. 2004, 58, 409–426. DOI: 10.1016/j.ejpb.2004.03.019.
  • Tint, N. L.; Rose, F. Use of Thermoreversible Hydrogels in Corneal Wound Repair. Eur. Ophthalmol. Rev. 2009, 03, 61–63. DOI: 10.17925/EOR.2009.03.01.61.
  • Fathi, M.; Barar, J.; Aghanejad, A.; Omidi, Y. Hydrogels for Ocular Drug Delivery and Tissue Engineering. Bioimpacts 2015, 5, 159–164. DOI: 10.15171/bi.2015.31.
  • Xu, W.; Liu, K.; Li, T.; Zhang, W.; Dong, Y.; Lv, J.; Wang, W.; Sun, J.; Li, M.; Wang, M.; et al. An in Situ Hydrogel Based on Carboxymethyl Chitosan and Sodium Alginate Dialdehyde for Corneal Wound Healing after Alkali Burn. J. Biomed. Mater. Res. 2019, 107, 742–754. DOI: 10.1002/jbm.a.36589.
  • Zhou, H. Y.; Chen, X. G.; Kong, M.; Liu, C. S.; Cha, D. S.; Kennedy, J. F. Effect of Molecular Weight and Degree of Chitosan Deacetylation on the Preparation and Characteristics of Chitosan Thermosensitive Hydrogel as a Delivery System. Carbohydr. Polym. 2008, 73, 265–273. DOI: 10.1016/j.carbpol.2007.11.026.
  • Wu, J.; Wei, W.; Wang, L.-Y.; Su, Z.-G.; Ma, G.-H. A Thermosensitive Hydrogel Based on Quaternized Chitosan and Poly(Ethylene Glycol) for Nasal Drug Delivery System. Biomaterials 2007, 28, 2220–2232. DOI: 10.1016/j.biomaterials.2006.12.024.
  • Chen, X.; Li, X.; Zhou, Y.; Wang, X.; Zhang, Y.; Fan, Y.; Huang, Y.; Liu, Y. Chitosan-Based Thermosensitive Hydrogel as a Promising Ocular Drug Delivery System: Preparation, Characterization, and in Vivo Evaluation. J. Biomater. Appl. 2012, 27, 391–402. DOI: 10.1177/0885328211406563.
  • Ruel-Gariépy, E.; Chenite, A.; Chaput, C.; Guirguis, S.; Leroux, J.-C. Characterization of Thermosensitive Chitosan Gels for the Sustained Delivery of Drugs. Int. J. Pharm. 2000, 203, 89–98. DOI: 10.1016/S0378-5173(00)00428-2.
  • Wu, J.; Su, Z. G.; Ma, G. H. A Thermo- and pH-Sensitive Hydrogel Composed of Quaternized Chitosan/Glycerophosphate. Int. J. Pharm. 2006, 315, 1–11. DOI: 10.1016/j.ijpharm.2006.01.045.
  • Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Gurny, R. Structure and Interactions in Chitosan Hydrogels Formed by Complexation or Aggregation for Biomedical Applications. Eur. J. Pharm. Biopharm. 2004, 57, 35–52. DOI: 10.1016/s0939-6411(03)00160-7.
  • Heidari Keshel, S.; Rostampour, M.; Khosropour, G.; Bandbon B, A.; Baradaran-Rafii, A.; Biazar, E. Derivation of Epithelial-like Cells from Eyelid Fat-Derived Stem Cells in Thermosensitive Hydrogel. J. Biomater. Sci. 2016, 27, 339–350. DOI: 10.1080/09205063.2015.1130406.
  • Lin, T.; Lu, Y.; Zhang, X.; Gong, L.; Wei, C. Treatment of Dry Eye by Intracanalicular Injection of a Thermosensitive Chitosan-Based Hydrogel: Evaluation of Biosafety and Availability. Biomater. Sci. 2018, 6, 3160–3169. DOI: 10.1039/c8bm01047a.
  • Meyer, J. S.; Shearer, R. L.; Capowski, E. E.; Wright, L. S.; Wallace, K. A.; McMillan, E. L.; Zhang, S.-C.; Gamm, D. M. Modeling Early Retinal Development with Human Embryonic and Induced Pluripotent Stem Cells. Proc. Natl. Acad. Sci. USA. 2009, 106, 16698–16703. DOI: 10.1073/pnas.0905245106.
  • Tang, Q.; Luo, C.; Lu, B.; Fu, Q.; Yin, H.; Qin, Z.; Lyu, D.; Zhang, L.; Fang, Z.; Zhu, Y.; et al. Thermosensitive Chitosan-Based Hydrogels Releasing Stromal Cell Derived Factor-1 Alpha Recruit MSC for Corneal Epithelium Regeneration. Acta Biomater. 2017, 61, 101–113. DOI: 10.1016/j.actbio.2017.08.001.
  • Chien, Y.; Liao, Y.-W.; Liu, D.-M.; Lin, H.-L.; Chen, S.-J.; Chen, H.-L.; Peng, C.-H.; Liang, C.-M.; Mou, C.-Y.; Chiou, S.-H.; et al. Corneal Repair by Human Corneal Keratocyte-Reprogrammed iPSCs and Amphiphatic Carboxymethyl-Hexanoyl Chitosan Hydrogel. Biomaterials 2012, 33, 8003–8016. DOI: 10.1016/j.biomaterials.2012.07.029.
  • Cheng, Y. H.; Yang, S. H.; Lin, F. H. Thermosensitive Chitosan-Gelatin-Glycerol Phosphate Hydrogel as a Controlled Release System of Ferulic Acid for Nucleus Pulposus Regeneration. Biomaterials 2011, 32, 6953–6961. DOI: 10.1016/j.biomaterials.2011.03.065.
  • Pratoomsoot, C.; Tanioka, H.; Hori, K.; Kawasaki, S.; Kinoshita, S.; Tighe, P. J.; Dua, H.; Shakesheff, K. M.; Rose, F. R. A. J. A Thermoreversible Hydrogel as a Biosynthetic Bandage for Corneal Wound Repair. Biomaterials 2008, 29, 272–281. DOI: 10.1016/j.biomaterials.2007.09.031.
  • Duvvuri, S.; Janoria, K. G.; Mitra, A. K. Development of a Novel Formulation Containing Poly(d,l-Lactide-co-Glycolide) Microspheres Dispersed in PLGA-PEG-PLGA Gel for Sustained Delivery of Ganciclovir. J Control Rel. 2005, 108, 282–293. DOI: 10.1016/j.jconrel.2005.09.002.
  • Chen, S.; Singh, J. Controlled Delivery of Testosterone from Smart Polymer Solution Based Systems: In Vitro Evaluation. Int. J. Pharm. 2005, 295, 183–190. DOI: 10.1016/j.ijpharm.2005.02.023.
  • Qiao, M.; Chen, D.; Ma, X.; Liu, Y. Injectable Biodegradable Temperature-Responsive PLGA-PEG-PLGA Copolymers: Synthesis and Effect of Copolymer Composition on the Drug Release from the Copolymer-Based Hydrogels. Int. J. Pharm. 2005, 294, 103–112. DOI: 10.1016/j.ijpharm.2005.01.017.
  • Biazar, E.; Khorasani, M. T.; Joupari, M. D. Cell Adhesion and Surface Properties of Polystyrene Surfaces Grafted with Poly(N-Isopropylacrylamide). Chin. J. Polym. Sci. 2013, 31, 1509–1518. DOI: 10.1007/s10118-013-1335-3.
  • Biazar, E.; Zeinali, R.; Montazeri, N.; Pourshamsian, K.; Behrouz, M. J.; Asefnejad, A.; Khoshzaban, A.; Shahhosseini, G.; Najafabadi, M. S.; Abyani, R.; et al. Cell Engineering: Nanometric Grafting of Poly-N-Isopropylacrylamide onto Polystyrene Film by Different Doses of Gamma Radiation. Int. J. Nanomedicine. 2010, 5, 549–556. DOI: 10.2147/ijn.s8269.
  • Biazar, E.; Pourshamsian, K. Synthesis and Properties of Thermo-Sensitive Hydrogels Based on PVA/Chitosan/PNIPAAm. Orient. J. Chem. 2011, 27, 1443–1449.
  • Kobayashi, J.; Kikuchi, A.; Aoyagi, T.; Okano, T. Cell Sheet Tissue Engineering: Cell Sheet Preparation, Harvesting/Manipulation, and Transplantation. J. Biomed. Mater. Res. A. 2019, 107, 955–967. DOI: 10.1002/jbm.a.36627.
  • Sitalakshmi, G.; Sudha, B.; Madhavan, H. N.; Vinay, S.; Krishnakumar, S.; Mori, Y.; Yoshioka, H.; Abraham, S. Ex Vivo Cultivation of Corneal Limbal Epithelial Cells in a Thermoreversible Polymer (Mebiol Gel) and Their Transplantation in Rabbits: An Animal Model. Tissue Eng. Part A. 2009, 15, 407–415. DOI: 10.1089/ten.tea.2008.0041.
  • Raj, D.; Kumary, T.; Anil, K. P. Development of Corneal Epithelial Cell Sheet Construct from Trans-Differentiated Bone Marrow Mesenchymal Stem Cells. Adv. Tissue Eng. Regen. Med. 2018, 4, 127–135.
  • Hayashida, Y.; Nishida, K.; Yamato, M.; Watanabe, K.; Maeda, N.; Watanabe, H.; Kikuchi, A.; Okano, T.; Tano, Y. Ocular Surface Reconstruction Using Autologous Rabbit Oral Mucosal Epithelial Sheets Fabricated Ex Vivo on a Temperature-Responsive Culture Surface. Invest. Ophthalmol. Vis. Sci. 2005, 46, 1632–1639. DOI: 10.1167/iovs.04-0813.
  • Nishida, K.; Yamato, M.; Hayashida, Y.; Watanabe, K.; Yamamoto, K.; Adachi, E.; Nagai, S.; Kikuchi, A.; Maeda, N.; Watanabe, H.; et al. Corneal Reconstruction with Tissue-Engineered Cell Sheets Composed of Autologous Oral Mucosal Epithelium. N. Engl. J. Med. 2004, 351, 1187–1196. DOI: 10.1056/NEJMoa040455.
  • Umemoto, T.; Yamato, M.; Nishida, K.; Okano, T. Regenerative Medicine of Cornea by Cell Sheet Engineering Using Temperature-Responsive Culture Surfaces. Chin. Sci. Bull. 2013, 58, 4349–4356. DOI: 10.1007/s11434-013-5742-1.
  • Fairbanks, B. D.; Schwartz, M. P.; Halevi, A. E.; Nuttelman, C. R.; Bowman, C. N.; Anseth, K. S. A Versatile Synthetic Extracellular Matrix Mimic via Thiol-Norbornene Photopolymerization. Adv. Mater. 2009, 21, 5005–5010. DOI: 10.1002/adma.200901808.
  • DeForest, C. A.; Polizzotti, B. D.; Anseth, K. S. Sequential Click Reactions for Synthesizing and Patterning Three-Dimensional Cell Microenvironments. Nat. Mater. 2009, 8, 659–664. DOI: 10.1038/nmat2473.
  • Rider, P.; Kačarević, Ž. P.; Alkildani, S.; Retnasingh, S.; Barbeck, M. Bioprinting of Tissue Engineering Scaffolds. J. Tissue Eng. 2018, 9, 2041731418802090. DOI: 10.1177/2041731418802090.
  • Li, L.; Lu, C.; Wang, L.; Chen, M.; White, J.; Hao, X.; McLean, K. M.; Chen, H.; Hughes, T. C. Gelatin-Based Photocurable Hydrogels for Corneal Wound Repair. ACS Appl. Mater. Interfaces 2018, 10, 13283–13292. DOI: 10.1021/acsami.7b17054.
  • Shirzaei Sani, E.; Kheirkhah, A.; Rana, D.; Sun, Z.; Foulsham, W.; Sheikhi, A.; Khademhosseini, A.; Dana, R.; Annabi, N. Sutureless Repair of Corneal Injuries Using Naturally Derived Bioadhesive Hydrogels. Sci. Adv. 2019, 5, eaav1281. DOI: 10.1126/sciadv.aav1281.
  • Xu, H.-L.; Tong, M.-Q.; Wang, L.-F.; Chen, R.; Li, X.-Z.; Sohawon, Y.; Yao, Q.; Xiao, J.; Zhao, Y.-Z. Thiolated γ-Polyglutamic Acid as a Bioadhesive Hydrogel-Forming Material: Evaluation of Gelation, Bioadhesive Properties and Sustained Release of KGF in the Repair of Injured Corneas. Biomater. Sci. 2019, 7, 2582–2599. DOI: 10.1039/c9bm00341j.
  • Applegate, M. B.; Partlow, B. P.; Coburn, J.; Marelli, B.; Pirie, C.; Pineda, R.; Kaplan, D. L.; Omenetto, F. G. Photocrosslinking of Silk Fibroin Using Riboflavin for Ocular Prostheses. Adv. Mater. 2016, 28, 2417–2420. DOI: 10.1002/adma.201504527.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.