305
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Fabrication and characterization of chitosan-based composite scaffolds for neural tissue engineering

, , , , , , & show all
Pages 831-841 | Received 24 Dec 2020, Accepted 06 Apr 2021, Published online: 24 Jun 2021

References

  • Zuidema, J. M.; Pap, M. M.; Jaroch, D. B.; Morrison, F. A.; Gilbert, R. J. Fabrication and Characterization of Tunable Polysaccharide Hydrogel Blends for Neural Repair. Acta Biomater. 2011, 7, 1634–1643. DOI: 10.1016/j.actbio.2010.11.039.
  • Lee, J.; Lilly, G. D.; Doty, R. C.; Podsiadlo, P.; Kotov, N. A. In Vitro Toxicity Testing of Nanoparticles in 3D Cell Culture. Small 2010, 5, 1213–1221. DOI: 10.1002/smll.200801788.
  • Kunze, A.; Giugliano, M.; Valero, A.; Renaud, P. Micropatterning Neural Cell Cultures in 3D with a Multi-Layered Scaffold. Biomaterials 2011, 32, 2088–2098. DOI: 10.1016/j.biomaterials.2010.11.047.
  • Kennedy, K. M.; Bhaw-Luximon, A.; Jhurry, D. Cell-Matrix Mechanical Interaction in Electrospun Polymeric Scaffolds for Tissue Engineering: Implications for Scaffold Design and Performance. Acta Biomater. 2017, 50, 41–55. DOI: 10.1016/j.actbio.2016.12.034.
  • Zhang, Y.; Ding, J.; Qi, B.; Tao, W.; Wang, J.; Zhao, C.; Peng, H.; Shi, J. Multifunctional Fibers to Shape Future Biomedical Devices. Adv. Funct. Mater. 2019, 29, 1902834. DOI: 10.1002/adfm.201902834.
  • Huh, D.; Kim, H. J.; Fraser, J. P.; Shea, D. E.; Khan, M.; Bahinski, A.; Hamilton, G. A.; Ingber, D. E. Microfabrication of Human Organs-on-Chips. Nat. Protoc. 2013, 8, 2135–2157. DOI: 10.1038/nprot.2013.137.
  • Ghasemi-Mobarakeh, L.; Prabhakaran, M. P.; Morshed, M.; Nasr-Esfahani, M. H.; Baharvand, H.; Kiani, S.; Al-Deyab, S. S.; Ramakrishna, S. Application of Conductive Polymers, Scaffolds and Electrical Stimulation for Nerve Tissue Engineering. J. Tissue Eng. Regenerat. Med. 2011, 5, e17–e35. DOI: 10.1002/term.383.
  • Zhang, J.; Zhang, X.; Wang, C.; Li, F.; Qiao, Z.; Zeng, L.; Wang, Z.; Liu, H.; Ding, J.; Yang, H. Conductive Composite Fiber with Optimized Alignment Guides Neural Regeneration under Electrical Stimulation. Adv. Healthc. Mater. 2020, 10, 2000604. DOI: 10.1002/adhm.202000604.
  • Zhang, X.; Qu, W.; Li, D.; Shi, K.; Chen, X. Functional Polymer‐Based Nerve Guide Conduits to romote Peripheral Nerve Regeneration. Adv. Mater. Interfaces 2020, 7, 2000225. DOI: 10.1002/admi.202000225.
  • Buwalda, S. J.; Boere, K. W. M.; Dijkstra, P. J.; Feijen, J.; Vermonden, T.; Hennink, W. E. Hydrogels in a Historical Perspective: From Simple Networks to Smart Materials. J. Controlled Release 2014, 190, 254–273. DOI: 10.1016/j.jconrel.2014.03.052.
  • Ding, J.; Zhang, J.; Li, J.; Li, D.; Xiao, C.; Xiao, H.; Yang, H.; Zhuang, X.; Chen, X. Electrospun Polymer Biomaterials. Prog. Polym. Sci. 2019, 90, 1–34. DOI: 10.1016/j.progpolymsci.2019.01.002.
  • Scanga, V. I.; Goraltchouk, A.; Nussaiba, N.; Shoichet, M. S.; Morshead, C. M. Biomaterials for Neural-Tissue Engineering — Chitosan Supports the Survival, Migration, and Differentiation of Adult-Derived Neural Stem and Progenitor Cells. Rev. Canad. Chim. 2010, 88, 277–287. DOI: 10.1139/v09-171.
  • Li, R.; Liu, H.; Huang, H.; Bi, W.; Yan, R.; Tan, X.; Wen, W.; Wang, C.; Song, W.; Zhang, Y. Chitosan Conduit Combined with Hyaluronic Acid Prevent Sciatic Nerve Scar in a Rat Model of Peripheral Nerve Crush Injury. Mol. Med. Rep. 2018, 17, 4360–4368. DOI: 10.3892/mmr.2018.8388.
  • Hou, H.; Zhang, L.; Ye, Z.; Li, J.; Lian, Z.; Chen, C.; He, R.; Peng, B.; Xu, Q.; Zhang, G. Chitooligosaccharide Inhibits Scar Formation and Enhances Functional Recovery in a Mouse Model of Sciatic Nerve Injury. Mol. Neurobiol. 2016, 53, 2249–2257. DOI: 10.1007/s12035-015-9196-0.
  • Hamed, I.; Özogul, F.; Regenstein, J. M. Industrial Applications of Crustacean by-Products (Chitin, Chitosan, and Chitooligosaccharides): A Review. Trend. Food Sci. Technol. 2016, 48, 40–50. DOI: 10.1016/j.tifs.2015.11.007.
  • Guan, S.; Zhang, X. L.; Lin, X. M.; Liu, T. Q.; Cui, Z. F. Chitosan/Gelatin Porous Scaffolds Containing Hyaluronic Acid and Heparan Sulfate for Neural Tissue Engineering. J. Biomater. Sci, Polym. Ed. 2013, 24, 999–1014. DOI: 10.1080/09205063.2012.731374.
  • García-Giralt, N.; García Cruz, D. M.; Nogues, X.; Ivirico, J. L. E.; Ribelles, J. L. G. Chitosan Microparticles for "in Vitro" 3D Culture of Human Chondrocytes. Rsc. Adv. 2013, 3, 6362. DOI: 10.1039/c3ra23173a.
  • Gámiz-González, M. A.; Correia, D. M.; Lanceros-Mendez, S.; Sencadas, V.; Gómez Ribelles, J. L.; Vidaurre, A. Kinetic Study of Thermal Degradation of Chitosan as a Function of Deacetylation Degree. Carbohydr. Polym. 2017, 167, 52–58. DOI: 10.1016/j.carbpol.2017.03.020.
  • Dash, M.; Chiellini, F.; Ottenbrite, R. M.; Chiellini, E. Chitosan—A Versatile Semi-Synthetic Polymer in Biomedical Applications. Prog. Polym. Sci. 2011, 36, 981–1014. DOI: 10.1016/j.progpolymsci.2011.02.001.
  • Anitha, A.; Sowmya, S.; Kumar, P. T. S.; Deepthi, S.; Jayakumar, R. Chitin and Chitosan in Selected Biomedical Applications. Prog. Polym. Sci. 2014, 39, 1644–1667. DOI: 10.1016/j.progpolymsci.2014.02.008.
  • Yin, D.; Hua, W.; Liu, C.; Zhang, J.; Zhou, T.; Wu, J.; Ying, W. Fabrication of Composition-Graded Collagen/Chitosan-Polylactide Scaffolds with Gradient Architecture and Properties. React. Funct. Polym. 2014, 83, 98–106. DOI: 10.1016/j.reactfunctpolym.2014.07.017.
  • Alieza, A. S.; Arani, A. R.; Moghanian, A.; Mozafari, M. Synthesis and Characterization of Electrospun Cerium-Doped Bioactive Glass/Chitosan/Polyethylene Oxide Composite Scaffolds for Tissue Engineering Applications. Ceram. Int. 2021, 47, 260–271. DOI: 10.1016/j.ceramint.2020.08.130.
  • S.; Kim, K.; Bedigrew, T.; Guda, W. J.  ; M. Sangwon, Novel Osteoinductive Photo-Cross-Linkable Chitosan-Lactide-Fibrinogen Hydrogels Enhance Bone Regeneration in Critical Size Segmental Bone Defects. Acta Biomater. 2014, 10, 5021–5033. DOI: 10.1016/j.actbio.2014.08.028.
  • Mohamed, K. R.; Beherei, H. H.; El-Rashidy, Z. M. In Vitro Study of Nano-Hydroxyapatite/Chitosan–Gelatin Composites for Bio-Applications. J. Adv. Res. 2014, 5, 201–208. DOI: 10.1016/j.jare.2013.02.004.
  • Ma, S.; Chen, Z.; Qiao, F.; Sun, Y.; Yang, X.; Deng, X.; Cen, L.; Cai, Q.; Wu, M.; Zhang, X. Guided Bone Regeneration with Tripolyphosphate Cross-Linked Asymmetric Chitosan Membrane. J. Dent. 2014, 42, 1603–1612. DOI: 10.1016/j.jdent.2014.08.015.
  • Angulo, D. E. L. O.; Ambrosio, C. E.; Lourenço, R.; Juliana, N.; Sobral, A. Fabrication, Characterization and In Vitro Cell Study of Gelatin-Chitosan Scaffolds: New Perspectives of Use of Aloe Vera and Snail Mucus for Soft Tissue Engineering. Mater. Chem. Phys. 2019, 234, 268–280. DOI: 10.1016/j.matchemphys.2019.06.003.
  • Inas, N. E.-H.; Kawkab, A. A. Application of Chitosan for Wound Repair in Dogs. Life Sci. J. 2012, 9, 196–203.DOI: 10.7537/marslsj090112.28.
  • Duman, E.; Bulut, B. Effect of Akermanite Powders on Mechanical Properties and Bioactivity of Chitosan-Based Scaffolds Produced by 3D-Bioprinting. Ceram. Int. 2021, 47, 13912–13921. DOI: 10.1016/j.ceramint.2021.01.258.
  • Choi, B.; Kim, S.; Lin, B.; Wu, B. M.; Lee, M. Cartilaginous Extracellular Matrix-Modified Chitosan Hydrogels for Cartilage Tissue Engineering. Acs Appl. Mater. Interfaces 2014, 6, 20110–20121. DOI: 10.1021/am505723k.
  • Pawelec, K. M.; Best, S. M.; Cameron, R. E. Collagen: A Network for Regenerative Medicine. J. Mater. Chem. B Mater. Biol. Med. 2016, 4, 6484–6496. DOI: 10.1039/C6TB00807K.
  • Zhang, X. Q.; Guan, S.; Ge, D.; Wang, S. P.; Ma, X. H. The Synergistic Effect of Modified Chitosan-Gelatin-Hyaluronate-Heparan Sulfate Scaffolds and PCA on NS/PCs Adhesion and Differentiation. J. Chem. Eng. Chin. Univ. 2014, 28, 1051–1058. DOI: 10.3969/j.issn.1003-9015.2014.05.14.05.
  • Bakopoulou, A.; Georgopoulou, Α.; Grivas, I.; Bekiari, C.; Prymak, O.; Loza, Κ.; Epple, M.; Papadopoulos, G. C.; Koidis, P.; Chatzinikolaidou, Μ. Dental Pulp Stem Cells in Chitosan/Gelatin Scaffolds for Enhanced Orofacial Bone Regeneration. Dent. Mater. 2018, 35, 310–327. DOI: 10.1016/j.dental.2018.11.025.
  • Yu, H.; Liu, J.; Zhao, Y. Y.; Jin, F.; Zheng, M. L. Biocompatible Three-Dimensional Hydrogel Cell Scaffold Fabricated by Sodium Hyaluronate and Chitosan Assisted Two-Photon Polymerization. Acs Appl. Bio Mater. 2019, 7, 3077–3083. DOI: 10.1021/acsabm.9b00384.
  • Lauritano, D.; Limongelli, L.; Moreo, G.; Favia, G.; Carinci, F. Nanomaterials for Periodontal Tissue Engineering: Chitosan-Based Scaffolds. A Systematic Review. Nanomaterials 2020, 10, 605. DOI: 10.3390/nano10040605.
  • Wang, J.; Xu, M.; Cheng, X.; Kong, M.; Chen, X. Positive/Negative Surface Charge of Chitosan Based Nanogels and Its Potential Influence on Oral Insulin Delivery. Carbohydr. Polym. 2016, 136, 867–874. DOI: 10.1016/j.carbpol.2015.09.103.
  • Silva, J. M.; Georgi, N.; Rui, C.; Sher, P.; Rui, L. R.; Blitterswijk, C. A. V.; Karperien, M.; Mano, J. F. Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering. PLoS One 2013, 8, e55451. DOI: 10.1371/journal.pone.0055451.
  • Liu, Y.; Meng, H.; Konst, S.; Sarmiento, R.; Rajachar, R.; Lee, B. P. Injectable Dopamine-Modified Poly(Ethylene Glycol) Nanocomposite Hydrogel with Enhanced Adhesive Property and Bioactivity. Acs Appl. Mater. Interfaces 2014, 6, 16982–16992. DOI: 10.1021/am504566v.
  • Xin, S.; Wyman, O. M.; Alge, D. L. Assembly of PEG Microgels into Porous Cell‐Instructive 3D Scaffolds via Thiol‐Ene Click Chemistry. Adv. Healthcare Mater. 2018, 7, e1800160. DOI: 10.1002/adhm.201800160.
  • Li, H.; Liu, C.; Xu, Q.; Lu, C.; Yang, G.; Wang, F.; Nie, J.; Hu, X.; Dong, N.; Shi, J. Bioengineered Three-Dimensional Scaffolds to Elucidate the Effects of Material Biodegradability on Cell Behavior Using POSS-PEG Hybrid Hydrogels. Polym. Degrad. Stabil. 2019, 164, 118–126. DOI: 10.1016/j.polymdegradstab.2019.04.008.
  • Goodarzi, H.; Jadidi, K.; Pourmotabed, S.; Sharifi, E.; Aghamollaei, H. Preparation and In Vitro Characterization of Cross-Linked Collagen-Gelatin Hydrogel Using EDC/NHS for Corneal Tissue Engineering Applications. Int. J. Biol. Macromol. 2019, 126, 620–632. DOI: 10.1016/j.ijbiomac.2018.12.125.
  • Kyle, L.; Omar, S.; Firouzeh, S. Growing Neural PC-12 Cell on Crosslinked Silica Aerogels Increases Neurite Extension in the Presence of an Electric Field. J. Funct. Biomater. 2018, 9, 30. DOI: 10.3390/jfb9020030.
  • Zhou, Z.; Liu, X.; Wu, W.; Sungjo, P.; Lee, M. I. A.; Andre, T.; Lu, L. Effective Nerve Cell Modulation by Electrical Stimulation of Carbon Nanotube Embedded Conductive Polymeric Scaffolds. Biomater. Sci. 2018, 6, 2375–2385. DOI: 10.1039/C8BM00553B.
  • Baniasadi, H.; Ramazani, S. A. A.; Mashayekhan, S. Fabrication and Characterization of Conductive Chitosan/Gelatin-Based Scaffolds for Nerve Tissue Engineering. Int. J. Biol. Macromol. 2015, 74, 360–366. DOI: 10.1016/j.ijbiomac.2014.12.014.
  • Büyükz, M.; Erdal, E.; Altinkaya, S. A. Nanofibrous Gelatine Scaffolds Integrated with Nerve Growth Factor‐Loaded Alginate Microspheres for Brain Tissue Engineering. J. Tissue Eng. Regenerat. Med. 2018, 12, e707–e719. DOI: 10.1002/term.2353.
  • Si, J.; Yang, Y.; Xing, X.; Yang, F.; Shan, P. Controlled Degradable Chitosan/Collagen Composite Scaffolds for Application in Nerve Tissue Regeneration. Polym. Degrad. Stabil. 2019, 166, 73–85. DOI: 10.1016/j.polymdegradstab.2019.05.023.
  • Vijayavenkataraman, S.; Thaharah, S.; Zhang, S.; Lu, W. F.; Fuh, J. Y. H. 3D-Printed PCL/rGO Conductive Scaffolds for Peripheral Nerve Injury Repair. Artif. Organs 2018, 43, 515–523. DOI: 10.1111/aor.13360.
  • Heo, S.-Y.; Choi, I.-W.; Ko, S.-C.; Oh, G.-W.; Sung-Wook, J. Anti-Inflammatory Effects of Sodium Alginate/Gelatine Porous Scaffolds Merged with Fucoidan in Murine Microglial BV2 Cells. Int. J. Biol. Macromol. 2016, 93, 1620–1632. DOI: 10.1016/j.ijbiomac.2016.05.078.
  • Salehi, M.; Farzamfar, S.; Bozorgzadeh, S.; Bastami, F. Fabrication of Poly(L-Lactic Acid)/Chitosan Scaffolds by Solid–Liquid Phase Separation Method for Nerve Tissue Engineering. J. Craniofacial Surg. 2019, 30, 784–789. DOI: 10.1097/SCS.0000000000005398.
  • Peng, S. W.; Li, C. W.; Chiu, I. M.; Wang, G. J. Nerve Guidance Conduit with a Hybrid Structure of a PLGA Microfibrous Bundle Wrapped in a Micro/Nanostructured Membrane. Int. J. Nanomed. 2017, 12, 421–432. DOI: 10.2147/IJN.S122017.
  • Lu, J.; Chen, X. L.; Tang, H. X.; She, N.; Zhang, G. H. A Novel Tissue-Engineered Crosslinked Collagen-Chitosan Scaffold and Its Biocompatibility with Nerve Cells. Chin. J. Tissue Eng. Res. 2017.
  • Kaizawa, Y.; Kakinoki, R.; Ikeguchi, R.; Ohta, S.; Noguchi, T.; Takeuchi, H.; Oda, H.; Yurie, H.; Matsuda, S. A Nerve Conduit Containing a Vascular Bundle and Implanted with Bone Marrow Stromal Cells and Decellularized Allogenic Nerve Matrix. Cell Transplant. 2017, 26, 215–228. DOI: 10.3727/096368916X692951.
  • Hu, F.; Zhang, X.; Liu, H.; Doulathunnisa, P. X.; Teng, G.; Xiao, Z. Neuronally Differentiated Adipose-Derived Stem Cells and Aligned PHBV Nanofiber Nerve Scaffolds Promote Sciatic Nerve Regeneration. Biochem. Biophys. Res. Commun. 2017, 489, 171–178. DOI: 10.1016/j.bbrc.2017.05.119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.