643
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Electrospun scaffold for bone regeneration

&
Pages 842-857 | Received 19 Jan 2021, Accepted 06 Apr 2021, Published online: 18 May 2021

References

  • Kushner, D. Mild Traumatic Brain Injury: Toward Understanding Manifestations and Treatment. Arch. Int. Med. 1998, 158, 1617–1624. DOI: 10.1001/archinte.158.15.1617.
  • Maurmann, N.; Sperling, L.-E.; Pranke, P. Electrospun and Electrosprayed Scaffolds for Tissue Engineering, in Cutting-Edge Enabling Technologies for Regenerative Medicine; Berlin: Springer, 2018, p. 79–100.
  • Shanbhag, S.; Pandis, N.; Mustafa, K.; Nyengaard  , J. R. Stavropoulos, Alveolar Bone Tissue Engineering in Critical-Size Defects of Experimental Animal Models: A Systematic Review and Meta-Analysis. J. Tissue Eng. Regener. Med. 2017, 11, 2935–2949. DOI: 10.1002/term.2198.
  • Kustos, T.; Alho, A.; Lepistö, J.; Ylikoski, M.; Ylinen, P.; Paavilainen, T. Comparative Study of Autograft or Allograft in Primary Anterior Cruciate Ligament Reconstruction. Int. Orthop. 2004, 28, 290–293. DOI: 10.1007/s00264-004-0568-8.
  • Mantripragada, V. P.; Lecka-Czernik, B.; Ebraheim, N. A.; Jayasuriya, A. C. An Overview of Recent Advances in Designing Orthopedic and Craniofacial Implants. J. Biomed. Mater. Res. Part A. 2013, 101, 3349–3364. DOI: 10.1002/jbm.a.34605.
  • Pekkarinen, J.; et al. Impaction Bone Grafting in Revision Hip Surgery: A High Incidence of Complications. J. Bone Jt Surg. Br. Vol. 2000, 82, 103–107. DOI: 10.1302/0301-620X.82B1.0820103.
  • Tran, R. T.; Thevenot, P.; Zhang, Y.; Gyawali, D.; Tang, L.; Yang, J. Scaffold Sheet Design Strategy for Soft Tissue Engineering. Materials 2010, 3, 1375–1389. DOI: 10.3390/ma3021375.
  • Rho, J.-Y.; Kuhn-Spearing, L.; Zioupos, P. Mechanical Properties and the Hierarchical Structure of Bone. Med. Eng. Phys. 1998, 20, 92–102. DOI: 10.1016/S1350-4533(98)00007-1.
  • Healy, K. E.; Thomas, C. H.; Rezania, A.; Kim, J. E.; McKeown, P. J.; Lom, B.; Hockberger, P. E. Kinetics of Bone Cell Organization and Mineralization on Materials with Patterned Surface Chemistry. Biomaterials. 1996, 17, 195–208. DOI: 10.1016/0142-9612(96)85764-4.
  • Liu, X.; Ma, P. X. Polymeric Scaffolds for Bone Tissue Engineering. Ann. Biomed. Eng. 2004, 32, 477–486. DOI: 10.1023/B:ABME.0000017544.36001.8e.
  • Holzwarth, J. M.; Ma, P. X. Biomimetic Nanofibrous Scaffolds for Bone Tissue Engineering. Biomaterials 2011, 32, 9622–9629. DOI: 10.1016/j.biomaterials.2011.09.009.
  • Yoshimoto, H.; Shin, Y. M.; Terai, H.; Vacanti, J. P. A Biodegradable Nanofiber Scaffold by Electrospinning and its Potential for Bone Tissue Engineering. Biomaterials 2003, 24, 2077–2082. DOI: 10.1016/S0142-9612(02)00635-X.
  • Akbarzadeh, R.; Yousefi, A. M. Effects of Processing Parameters in Thermally Induced Phase Separation Technique on Porous Architecture of Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res. B: Appl. Biomater. 2014, 102, 1304–1315. DOI: 10.1002/jbm.b.33101.
  • Lee, K.-W.; Wang, S.; Fox, B. C.; Ritman, E. L.; Yaszemski, M. J.; Lu, L. Poly (Propylene Fumarate) Bone Tissue Engineering Scaffold Fabrication Using Stereolithography: Effects of Resin Formulations and Laser Parameters. Biomacromolecules 2007, 8, 1077–1084. DOI: 10.1021/bm060834v.
  • Roseti, L.; Parisi, V.; Petretta, M.; Cavallo, C.; Desando, G.; Bartolotti, I.; Grigolo, B. Scaffolds for Bone Tissue Engineering: State of the Art and New Perspectives. Mater. Sci. Eng. C 2017, 78, 1246–1262. DOI: 10.1016/j.msec.2017.05.017.
  • Agarwal, S.; Wendorff, J. H.; Greiner, A. Use of Electrospinning Technique for Biomedical Applications. Polymer 2008, 49, 5603–5621. DOI: 10.1016/j.polymer.2008.09.014.
  • Kai, D.; Liow, S. S.; Loh, X. J. Biodegradable Polymers for Electrospinning: Towards Biomedical Applications. Mater. Sci. Eng. C. 2014, 45, 659–670. DOI: 10.1016/j.msec.2014.04.051.
  • Haider, A.; Haider, S.; Kang, I.-K. A Comprehensive Review Summarizing the Effect of Electrospinning Parameters and Potential Applications of Nanofibers in Biomedical and Biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. DOI: 10.1016/j.arabjc.2015.11.015.
  • Cui, F.-Z.; Li, Y.; Ge, J. Self-Assembly of Mineralized Collagen Composites. Mater. Sci. Eng. R: Rep. 2007, 57, 1–27. DOI: 10.1016/j.mser.2007.04.001.
  • Boskey, A. L. Bone Composition: Relationship to Bone Fragility and Antiosteoporotic Drug Effects. Bone Key Rep. 2013, 2, 447. DOI: 10.1038/bonekey.2013.181.
  • Von Euw, S.; Wang, Y.; Laurent, G.; Drouet, C.; Babonneau, F.; Nassif, N.; Azais, T. Bone Mineral: New Insights into its Chemical Composition. Sci. Rep. 2019, 9, 1–11. DOI: 10.1038/s41598-019-44620-6.
  • Porter, J. R.; Ruckh, T. T.; Popat, K. C. Bone Tissue Engineering: A Review in Bone Biomimetics and Drug Delivery Strategies. Biotechnol. Progr. 2009, 25, 1539–1560. DOI: 10.1002/btpr.246.
  • Wang, X.; Ding, B.; Li, B. Biomimetic Electrospun Nanofibrous Structures for Tissue Engineering. Mater. Today 2013, 16, 229–241. DOI: 10.1016/j.mattod.2013.06.005.
  • Turnbull, G.; Clarke, J.; Picard, F.; Riches, P.; Jia, L.; Han, F.; Li, B.; Shu, W. 3D Bioactive Composite Scaffolds for Bone Tissue Engineering. Bioact. Mater. 2018, 3, 278–314. DOI: 10.1016/j.bioactmat.2017.10.001.
  • Bose, S.; Tarafder, S.; Bandyopadhyay, A. Effect of Chemistry on Osteogenesis and Angiogenesis towards Bone Tissue Engineering Using 3D Printed Scaffolds. Ann. Biomed. Eng. 2017, 45, 261–272. DOI: 10.1007/s10439-016-1646-y.
  • Lai, Y.; Li, Y.; Cao, H.; Long, J.; Wang, X.; Li, L.; Li, C.; Jia, Q.; Teng, B.; Tang, T.; Peng, J. Osteogenic Magnesium Incorporated into PLGA/TCP Porous Scaffold by 3D Printing for Repairing Challenging Bone Defect. Biomaterials 2019, 197, 207–219. DOI: 10.1016/j.biomaterials.2019.01.013.
  • Abdullah, M. R.; Goharian, A.; Abdul Kadir, M. R.; Wahit, M. U. Biomechanical and Bioactivity Concepts of Polyetheretherketone Composites for Use in Orthopedic Implants—A Review. J. Biomed. Mater. Res. Part A. 2015, 103, 3689–3702. DOI: 10.1002/jbm.a.35480.
  • Yuan, B.; Cheng, Q.; Zhao, R.; Zhu, X.; Yang, X.; Yang, X.; Zhang, K.; Song, Y.; Zhang, X. Comparison of Osteointegration Property between PEKK and PEEK: Effects of Surface Structure and Chemistry. Biomaterials. 2018, 170, 116–126. DOI: 10.1016/j.biomaterials.2018.04.014.
  • Du, L.; Yang, S.; Li, W.; Li, H.; Feng, S.; Zeng, R.; Yu, B.; Xiao, L.; Nie, H. Y.; Tu, M. Scaffold Composed of Porous Vancomycin-Loaded Poly (Lactide-co-Glycolide) Microspheres: A Controlled-Release Drug Delivery System with Shape-Memory Effect. Mater. Sci. Eng. C. 2017, 78, 1172–1178. DOI: 10.1016/j.msec.2017.04.099.
  • Moore, A. N.; Hartgerink, J. D. Self-Assembling Multidomain Peptide Nanofibers for Delivery of Bioactive Molecules and Tissue Regeneration. Acc. Chem. Res. 2017, 50, 714–722. DOI: 10.1021/acs.accounts.6b00553.
  • Rampichova, M.; Chvojka, J.; Jenčová, V.; Kubíková, T.; Tonar, Z.; Erben, J.; Buzgo, M.; Daňková, J.; Litvinec, A.; Vocetková, K.; Plencner, M. The Combination of Nanofibrous and Microfibrous Materials for Enhancement of Cell Infiltration and In Vivo Bone Tissue Formation. Biomed. Mater. 2018, 13, 025004. DOI: 10.1088/1748-605X/aa9717.
  • Medeiros, E. L. G.; Braz, A. L.; Porto, I. J.; Menner, A.; Bismarck, A.; Boccaccini, A. R.; Lepry, W. C.; Nazhat, S. N.; Medeiros, E. S.; Blaker, J. J. Porous Bioactive Nanofibers via Cryogenic Solution Blow Spinning and Their Formation into 3D Macroporous Scaffolds. ACS Biomater. Sci. Eng. 2016, 2, 1442–1449. DOI: 10.1021/acsbiomaterials.6b00072.
  • Chlanda, A.; Oberbek, P.; Heljak, M.; Górecka, Ż.; Czarnecka, K.; Chen, K. S.; Woźniak, M. J. Nanohydroxyapatite Adhesion to Low Temperature Plasma Modified Surface of 3D-Printed Bone Tissue Engineering Scaffolds-Qualitative and Quantitative Study. Surf. Coat. Technol. 2019, 375, 637–644. DOI: 10.1016/j.surfcoat.2019.07.070.
  • Nie, W.; Peng, C.; Zhou, X.; Chen, L.; Wang, W.; Zhang, Y.; Ma, P. X.; He, C. Three-Dimensional Porous Scaffold by Self-Assembly of Reduced Graphene Oxide and Nano-Hydroxyapatite Composites for Bone Tissue Engineering. Carbon 2017, 116, 325–337. DOI: 10.1016/j.carbon.2017.02.013.
  • Moradi, S. L.; Golchin, A.; Hajishafieeha, Z.; Khani, M. M.; Ardeshirylajimi, A. Bone Tissue Engineering: Adult Stem Cells in Combination with Electrospun Nanofibrous Scaffolds. J. Cell. Physiol. 2018, 233, 6509–6522. DOI: 10.1002/jcp.26606.
  • Soldate, P.; Fan, J. Controlled Deposition of Electrospun Nanofibers by Electrohydrodynamic Deflection. J. Appl. Phys. 2019, 125, 054901. DOI: 10.1063/1.5084284.
  • Mirjalili, M.; Zohoori, S. Review for Application of Electrospinning and Electrospun Nanofibers Technology in Textile Industry. J. Nanostruct. Chem. 2016, 6, 207–213. DOI: 10.1007/s40097-016-0189-y.
  • Sill, T. J.; von Recum, H. A. Electrospinning: Applications in Drug Delivery and Tissue Engineering. Biomaterials. 2008, 29, 1989–2006. DOI: 10.1016/j.biomaterials.2008.01.011.
  • Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. DOI: 10.1021/acs.chemrev.8b00593.
  • Zachariades, A. E.; Porter, R. S.; Doshi, J.; Srinivasan, G.; Reneker, D. H. High Modulus Polymers. A Novel Electrospinning Process. Polymer News. 1995, 20, 206–207.
  • Theron, A.; Zussman, E.; Yarin, A. Electrostatic Field-Assisted Alignment of Electrospun Nanofibres. Nanotechnology. 2001, 12, 384. DOI: 10.1088/0957-4484/12/3/329.
  • Zeleny, J. The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces. Phys. Rev. 1914, 3, 69. DOI: 10.1103/PhysRev.3.69.
  • Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S. Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning. J. Appl. Phys. 2000, 87, 4531–4547. DOI: 10.1063/1.373532.
  • Hohman, M. M.; Shin, M.; Rutledge, G.; Brenner, M. P. Electrospinning and Electrically Forced Jets. I. Stability Theory. Phys. Fluids 2001, 13, 2201–2220. DOI: 10.1063/1.1383791.
  • Frenot, A.; Chronakis, I. S. Polymer Nanofibers Assembled by Electrospinning. Curr. Opin. Colloid Interface Science 2003, 8, 64–75. DOI: 10.1016/S1359-0294(03)00004-9.
  • Kameoka, J.; Orth, R.; Yang, Y.; Czaplewski, D.; Mathers, R.; Coates, G. W.; Craighead, H. G. A Scanning Tip Electrospinning Source for Deposition of Oriented Nanofibres. Nanotechnology 2003, 14, 1124. DOI: 10.1088/0957-4484/14/10/310.
  • Zhang, D.; Chang, J. Patterning of Electrospun Fibers Using Electroconductive Templates. Adv. Mater. 2007, 19, 3664–3667. DOI: 10.1002/adma.200700896.
  • Zucchelli, A.; Fabiani, D.; Gualandi, C.; Focarete, M. L. An Innovative and Versatile Approach to Design Highly Porous, Patterned, Nanofibrous Polymeric Materials. J. Mater. Sci. 2009, 44, 4969–4975. DOI: 10.1007/s10853-009-3759-2.
  • Klinkhammer, K.; Seiler, N.; Grafahrend, D.; Gerardo-Nava, J.; Mey, J.; Brook, G. A.; Möller, M.; Dalton, P. D.; Klee, D. Deposition of Electrospun Fibers on Reactive Substrates for In Vitro Investigations. Tissue Eng. C: Methods. 2009, 15, 77–85. DOI: 10.1089/ten.tec.2008.0324.
  • Sankaran, K. K.; Vasanthan, K. S.; Krishnan, U. M.; Sethuraman, S. Development and Evaluation of Axially Aligned Nanofibres for Blood Vessel Tissue Engineering. J. Tissue Eng. Regener. Med. 2014, 8, 640–651. DOI: 10.1002/term.1566.
  • Motamedi, A. S.; Mirzadeh, H.; Hajiesmaeilbaigi, F.; Bagheri-Khoulenjani, S.; Shokrgozar, M. Effect of Electrospinning Parameters on Morphological Properties of PVDF Nanofibrous Scaffolds. Prog. Biomater. 2017, 6, 113–123. DOI: 10.1007/s40204-017-0071-0.
  • Ji, Y.; Ghosh, K.; Shu, X. Z.; Li, B.; Sokolov, J. C.; Prestwich, G. D.; Clark, R. A.; Rafailovich, M. H. Electrospun Three-Dimensional Hyaluronic Acid Nanofibrous Scaffolds. Biomaterials 2006, 27, 3782–3792. DOI: 10.1016/j.biomaterials.2006.02.037.
  • Asran, A. S.; Henning, S.; Michler, G. H. Polyvinyl Alcohol–Collagen–Hydroxyapatite Biocomposite Nanofibrous Scaffold: Mimicking the Key Features of Natural Bone at the Nanoscale Level. Polymer 2010, 51, 868–876. DOI: 10.1016/j.polymer.2009.12.046.
  • Khalf, A.; Madihally, S. V. Recent Advances in Multiaxial Electrospinning for Drug Delivery. Eur. J. Pharm. Biopharm. 2017, 112, 1–17. DOI: 10.1016/j.ejpb.2016.11.010.
  • Teo, W.; Kotaki, M.; Mo, X. M.; Ramakrishna, S. Porous Tubular Structures with Controlled Fibre Orientation Using a Modified Electrospinning Method. Nanotechnology. 2005, 16, 918. DOI: 10.1088/0957-4484/16/6/049.
  • Keirouz, A.; Fortunato, G.; Zhang, M.; Callanan, A.; Radacsi, N. Nozzle-Free Electrospinning of Polyvinylpyrrolidone/Poly (Glycerol Sebacate) Fibrous Scaffolds for Skin Tissue Engineering Applications. Med. Eng. Phys. 2019, 71, 56–67. DOI: 10.1016/j.medengphy.2019.06.009.
  • Theron, S.; Yarin, A. L.; Zussman, E.; Kroll, E. Multiple Jets in Electrospinning: Experiment and Modeling. Polymer 2005, 46, 2889–2899. DOI: 10.1016/j.polymer.2005.01.054.
  • Muerza-Cascante, M. L.; Haylock, D.; Hutmacher, D. W.; Dalton, P. D. Melt Electrospinning and its Technologization in Tissue Engineering. Tissue Eng. B: Rev. 2015, 21, 187–202. DOI: 10.1089/ten.TEB.2014.0347.
  • Lian, H.; Meng, Z. Melt Electrospinning vs. solution Electrospinning: A Comparative Study of Drug-Loaded Poly (ε-Caprolactone) Fibres. Mater. Sci. Eng. C. 2017, 74, 117–123. DOI: 10.1016/j.msec.2017.02.024.
  • Wunner, F. M.; Bas, O.; Saidy, N. T.; Dalton, P. D.; Pardo, E. M. D. J.; Hutmacher, D. W. Melt Electrospinning Writing of Three-Dimensional Poly (ε-Caprolactone) Scaffolds with Controllable Morphologies for Tissue Engineering Applications. JoVE (J. Vis. Exp.). 2017, e56289. DOI: 10.3791/56289.
  • Chen, G.; Lv, Y. Immobilization and Application of Electrospun Nanofiber Scaffold-Based Growth Factor in Bone Tissue Engineering. Curr. Pharm. Des. 2015, 21, 1967–1978. DOI: 10.2174/1381612821666150302152704.
  • Jalaja, K.; Naskar, D.; Kundu, S. C.; James, N. R. Potential of Electrospun Core–Shell Structured Gelatin–Chitosan Nanofibers for Biomedical Applications. Carbohydr. Polym. 2016, 136, 1098–1107. DOI: 10.1016/j.carbpol.2015.10.014.
  • Moghe, A.; Gupta, B. Co-Axial Electrospinning for Nanofiber Structures: Preparation and Applications. Polym. Rev. 2008, 48, 353–377. DOI: 10.1080/15583720802022257.
  • Huang, Z. M.; He, C. L.; Yang, A.; Zhang, Y.; Han, X. J.; Yin, J.; Wu, Q. Encapsulating Drugs in Biodegradable Ultrafine Fibers through Coaxial Electrospinning. J. Biomed. Mater. Res. A 2006, 77, 169–179. DOI: 10.1002/jbm.a.30564.
  • Yu, D. G.; Branford-White, C.; Bligh, S. A.; White, K.; Chatterton, N. P.; Zhu, L. M. Improving Polymer Nanofiber Quality Using a Modified Co-Axial Electrospinning Process. Macromol. Rapid Commun. 2011, 32, 744–750. DOI: 10.1002/marc.201100049.
  • Qiu, L. Y.; Bae, Y. H. Self-Assembled Polyethylenimine-Graft-Poly (ε-Caprolactone) Micelles as Potential Dual Carriers of Genes and Anticancer Drugs. Biomaterials. 2007, 28, 4132–4142. DOI: 10.1016/j.biomaterials.2007.05.035.
  • Lee, J. S.; Bae, J. W.; Joung, Y. K.; Lee, S. J.; Han, D. K.; Park, K. D. Controlled Dual Release of Basic Fibroblast Growth Factor and Indomethacin from Heparin-Conjugated Polymeric Micelle. Int. J. Pharm. 2008, 346, 57–63. DOI: 10.1016/j.ijpharm.2007.06.025.
  • Su, Y.; Su, Q.; Liu, W.; Lim, M.; Venugopal, J. R.; Mo, X.; Ramakrishna, S.; Al-Deyab, S. S.; El-Newehy, M. Controlled Release of Bone Morphogenetic Protein 2 and Dexamethasone Loaded in Core–Shell PLLACL–Collagen Fibers for Use in Bone Tissue Engineering. Acta Biomater. 2012, 8, 763–771. DOI: 10.1016/j.actbio.2011.11.002.
  • Cui, W.; Zhou, Y.; Chang, J. Electrospun Nanofibrous Materials for Tissue Engineering and Drug Delivery. Sci. Technol. Adv. Mater. 2010, 11, 014108. DOI: 10.1088/1468-6996/11/1/014108.
  • Matsugaki, A.; Isobe, Y.; Saku, T.; Nakano, T. Quantitative Regulation of Bone-Mimetic, Oriented Collagen/Apatite Matrix Structure Depends on the Degree of Osteoblast Alignment on Oriented Collagen Substrates. J. Biomed. Mater. Res. Part A. 2015, 103, 489–499. DOI: 10.1002/jbm.a.35189.
  • Park, S. H.; Yang, D. Y. Fabrication of Aligned Electrospun Nanofibers by Inclined Gap Method. J. Appl. Polym. Sci. 2011, 120, 1800–1807. DOI: 10.1002/app.33395.
  • Li, D.; Wang, Y.; Xia, Y. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Lett. 2003, 3, 1167–1171. DOI: 10.1021/nl0344256.
  • Udomluck, N.; Koh, W. G.; Lim, D. J.; Park, H. Recent Developments in Nanofiber Fabrication and Modification for Bone Tissue Engineering. Int. J. Mol. Sci. 2020, 21, 99.
  • Sell, S. A.; Wolfe, P. S.; Garg, K.; McCool, J. M.; Rodriguez, I. A.; Bowlin, G. L. The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues. Polymers 2010, 2, 522–553. DOI: 10.3390/polym2040522.
  • Nair, L. S.; Bhattacharyya, S.; Laurencin, C. T. Development of Novel Tissue Engineering Scaffolds via Electrospinning. Expert Opin. Biol. Ther. 2004, 4, 659–668. DOI: 10.1517/14712598.4.5.659.
  • Subramanian, A.; Krishnan, U. M.; Sethuraman, S. Fabrication of Uniaxially Aligned 3D Electrospun Scaffolds for Neural Regeneration. Biomed. Mater. 2011, 6, 025004. DOI: 10.1088/1748-6041/6/2/025004.
  • Jang, J.-H.; Castano, O.; Kim, H.-W. Electrospun Materials as Potential Platforms for Bone Tissue Engineering. Adv. Drug Deliv. Rev. 2009, 61, 1065–1083. DOI: 10.1016/j.addr.2009.07.008.
  • Chun, H. J.; et al. Cutting-Edge Enabling Technologies for Regenerative Medicine, Vol. 1078; Berlin: Springer, 2018.
  • Nam, J.; Huang, Y.; Agarwal, S.; Lannutti, J. Improved Cellular Infiltration in Electrospun Fiber via Engineered Porosity. Tissue Eng. 2007, 13, 2249–2257. DOI: 10.1089/ten.2006.0306.
  • Tuzlakoglu, K.; Bolgen, N.; Salgado, A. J.; Gomes, M. E.; Piskin, E.; Reis, R. L. Nano-and Micro-Fiber Combined Scaffolds: A New Architecture for Bone Tissue Engineering. J. Mater. Sci. Mater. Med. 2005, 16, 1099–1104. DOI: 10.1007/s10856-005-4713-8.
  • Park, S. H.; Kim, T. G.; Kim, H. C.; Yang, D. Y.; Park, T. G. Development of Dual Scale Scaffolds via Direct Polymer Melt Deposition and Electrospinning for Applications in Tissue Regeneration. Acta Biomater. 2008, 4, 1198–1207. DOI: 10.1016/j.actbio.2008.03.019.
  • Wang, Y.; Wang, B.; Wang, G.; Yin, T.; Yu, Q. A Novel Method for Preparing Electrospun Fibers with Nano-/Micro-Scale Porous Structures. Polym. Bull. 2009, 63, 259–265. DOI: 10.1007/s00289-009-0078-3.
  • Cai, Y. Z.; Zhang, G. R.; Wang, L. L.; Jiang, Y. Z.; Ouyang, H. W.; Zou, X. H. Novel Biodegradable Three-Dimensional Macroporous Scaffold Using Aligned Electrospun Nanofibrous Yarns for Bone Tissue Engineering. J. Biomed. Mater. Res. Part A. 2012, 100, 1187–1194. DOI: 10.1002/jbm.a.34063.
  • Badami, A. S.; Kreke, M. R.; Thompson, M. S.; Riffle, J. S.; Goldstein, A. S. Effect of Fiber Diameter on Spreading, Proliferation, and Differentiation of Osteoblastic Cells on Electrospun Poly (Lactic Acid) Substrates. Biomaterials. 2006, 27, 596–606. DOI: 10.1016/j.biomaterials.2005.05.084.
  • Andric, T.; Wright, L. D.; Taylor, B. L.; Freeman, J. W. Fabrication and Characterization of Three-Dimensional Electrospun Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res. A. 2012, 100, 2097–2105. DOI: 10.1002/jbm.a.34045.
  • Khorshidi, S.; Solouk, A.; Mirzadeh, H.; Mazinani, S.; Lagaron, J. M.; Sharifi, S.; Ramakrishna, S. A Review of Key Challenges of Electrospun Scaffolds for Tissue-Engineering Applications. J. Tissue Eng. Regener. Med. 2016, 10, 715–738. DOI: 10.1002/term.1978.
  • Jun, I.; Han, H. S.; Edwards, J. R.; Jeon, H. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. Int. J. Mol. Sci. 2018, 19, 745. DOI: 10.3390/ijms19030745.
  • Murugan, R.; Ramakrishna, S. Design Strategies of Tissue Engineering Scaffolds with Controlled Fiber Orientation. Tissue Eng. 2007, 13, 1845–1866. DOI: 10.1089/ten.2006.0078.
  • Aragon, J.; Navascues, N.; Mendoza, G.; Irusta, S. Laser-Treated Electrospun Fibers Loaded with Nano-Hydroxyapatite for Bone Tissue Engineering. Int. J. Pharm. 2017, 525, 112–122. DOI: 10.1016/j.ijpharm.2017.04.022.
  • Nerurkar, N. L.; Sen, S.; Baker, B. M.; Elliott, D. M.; Mauck, R. L. Dynamic Culture Enhances Stem Cell Infiltration and Modulates Extracellular Matrix Production on Aligned Electrospun Nanofibrous Scaffolds. Acta Biomater. 2011, 7, 485–491. DOI: 10.1016/j.actbio.2010.08.011.
  • Liao, J.; Guo, X.; Nelson, D.; Kasper, F. K.; Mikos, A. G. Modulation of Osteogenic Properties of Biodegradable Polymer/Extracellular Matrix Scaffolds Generated with a Flow Perfusion Bioreactor. Acta Biomater. 2010, 6, 2386–2393. DOI: 10.1016/j.actbio.2010.01.011.
  • Gaspar, D. A.; Gomide, V.; Monteiro, F. J. The Role of Perfusion Bioreactors in Bone Tissue Engineering. Biomatter. 2012, 2, 167–175. DOI: 10.4161/biom.22170.
  • Jaiswal, A.; Chabra, H.; Soni, V. P.; Bellare, J. R. Enhanced Mechanical Strength and Biocompatibility of Electrospun Polycaprolactone-Gelatin Scaffold with Surface Deposited Nano-Hydroxyapatite. Mater. Sci. Eng. C. 2013, 33, 2376–2385. DOI: 10.1016/j.msec.2013.02.003.
  • Mani, M. P.; Jaganathan, S. K.; Supriyanto, E. Enriched Mechanical Strength and Bone Mineralisation of Electrospun Biomimetic Scaffold Laden with Ylang Ylang Oil and Zinc Nitrate for Bone Tissue Engineering. Polymers. 2019, 11, 1323. DOI: 10.3390/polym11081323.
  • Bhattacharyya, S.; Kumbar, S. G.; Khan, Y. M.; Nair, L. S.; Singh, A.; Krogman, N. R.; Brown, P. W.; Allcock, H. R.; Laurencin, C. T. Biodegradable Polyphosphazene-Nanohydroxyapatite Composite Nanofibers: Scaffolds for Bone Tissue Engineering. J. Biomed. Nanotechnol. 2009, 5, 69–75. DOI: 10.1166/jbn.2009.032.
  • Chen, P.; Liu, L.; Pan, J.; Mei, J.; Li, C.; Zheng, Y. Biomimetic Composite Scaffold of Hydroxyapatite/Gelatin–Chitosan Core–Shell Nanofibers for Bone Tissue Engineering. Mater. Sci. Eng. C. 2019, 97, 325–335. DOI: 10.1016/j.msec.2018.12.027.
  • Venugopal, J.; Vadgama, P.; Kumar, T. S.; Ramakrishna, S. Biocomposite Nanofibres and Osteoblasts for Bone Tissue Engineering. Nanotechnology. 2007, 18, 055101. DOI: 10.1088/0957-4484/18/5/055101.
  • Sahithi, K.; Swetha, M.; Ramasamy, K.; Srinivasan, N.; Selvamurugan, N. Polymeric Composites Containing Carbon Nanotubes for Bone Tissue Engineering. Int. J. Biol. Macromol. 2010, 46, 281–283. DOI: 10.1016/j.ijbiomac.2010.01.006.
  • Iron, R.; et al. Effects of Nano-Bioactive Glass on Structural, Mechanical and Bioactivity Properties of Poly (3-Hydroxybutyrate) Electrospun Scaffold for Bone Tissue Engineering Applications. Mater. Technol. 2019, 34, 540–548. DOI: 10.1080/10667857.2019.1591728.
  • Ko, E. K.; Jeong, S. I.; Rim, N. G.; Lee, Y. M.; Shin, H.; Lee, B. K. In Vitro Osteogenic Differentiation of Human Mesenchymal Stem Cells and In Vivo Bone Formation in Composite Nanofiber Meshes. Tissue Eng. A. 2008, 14, 2105–2119. DOI: 10.1089/ten.tea.2008.0057.
  • Jaiswal, A. K.; Kadam, S. S.; Soni, V. P.; Bellare, J. R. Improved Functionalization of Electrospun PLLA/Gelatin Scaffold by Alternate Soaking Method for Bone Tissue Engineering. Appl. Surf. Sci. 2013, 268, 477–488. DOI: 10.1016/j.apsusc.2012.12.152.
  • Frohbergh, M. E.; Katsman, A.; Botta, G. P.; Lazarovici, P.; Schauer, C. L.; Wegst, U. G.; Lelkes, P. I. Electrospun Hydroxyapatite-Containing Chitosan Nanofibers Crosslinked with Genipin for Bone Tissue Engineering. Biomaterials. 2012, 33, 9167–9178. DOI: 10.1016/j.biomaterials.2012.09.009.
  • Barnes, C. P. C. P.; Pemble, C. W. IV, Brand, D. D.; Simpson, D. G.; Bowlin, G. L. Crosslinking Electrospun Type II Collagen Tissue Engineering Scaffolds with Carbodiimide in Ethanol. Tissue Eng. 2007, 13, 1593–1605. DOI: 10.1089/ten.2006.0292.
  • Xu, Y.; Li, L.; Yu, X.; Gu, Z.; Zhang, X. Feasibility Study of a Novel Crosslinking Reagent (Alginate Dialdehyde) for Biological Tissue Fixation. Carbohydr. Polym. 2012, 87, 1589–1595. DOI: 10.1016/j.carbpol.2011.09.059.
  • Baji, A.; Mai, Y. W.; Wong, S. C.; Abtahi, M.; Chen, P. Electrospinning of Polymer Nanofibers: Effects on Oriented Morphology, Structures and Tensile Properties. Compos. Sci. Technol. 2010, 70, 703–718. DOI: 10.1016/j.compscitech.2010.01.010.
  • McCullen, S. D.; Haslauer, C. M.; Loboa, E. G. Fiber-Reinforced Scaffolds for Tissue Engineering and Regenerative Medicine: Use of Traditional Textile Substrates to Nanofibrous Arrays. J. Mater. Chem. 2010, 20, 8776–8788. DOI: 10.1039/c0jm01443e.
  • Zhu, Y.; Shah, N. H.; Malick, A. W.; Infeld, M. H.; McGinity, J. W. Influence of Thermal Processing on the Properties of Chlorpheniramine Maleate Tablets Containing an Acrylic Polymer. Pharm. Dev. Technol. 2002, 7, 481–489. DOI: 10.1081/pdt-120015050.
  • Joseph, E. G.; Wood, L. E.; Krueger, D. L.; Suszko, P. R.; Meyer, D. E. 3M Co, Stretchable Nonwoven Webs Based on Multi-Layer Blown Microfibers; 1993, Google Patents.
  • Ding, Y.; Li, W.; MüLler, T.; Schubert, D. W.; Boccaccini, A. R.; Yao, Q.; Roether, J. A. Electrospun Polyhydroxybutyrate/Poly (ε-Caprolactone)/58S Sol–Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering. ACS Appl. Mater. Interfaces 2016, 8, 17098–17108. DOI: 10.1021/acsami.6b03997.
  • Pirzada, T.; Arvidson, S. A.; Saquing, C. D.; Shah, S. S.; Khan, S. A. Hybrid Silica–PVA Nanofibers via Sol–Gel Electrospinning. Langmuir 2012, 28, 5834–5844. DOI: 10.1021/la300049j.
  • Sethu, S. N.; et al. Nanoceramics on Osteoblast Proliferation and Differentiation in Bone Tissue Engineering. Int. J. Biol. Macromol. 2017, 98, 67–74. DOI: 10.1016/j.ijbiomac.2017.01.089.
  • Vaquette, C.; Cooper-White, J. A Simple Method for Fabricating 3-D Multilayered Composite Scaffolds. Acta Biomater. 2013, 9, 4599–4608. DOI: 10.1016/j.actbio.2012.08.015.
  • Zucchelli, A.; Focarete, M. L.; Gualandi, C.; Ramakrishna, S. Electrospun Nanofibers for Enhancing Structural Performance of Composite Materials. Polym. Adv. Technol. 2011, 22, 339–349. DOI: 10.1002/pat.1837.
  • Wang, X.; Han, C.; Hu, X.; Sun, H.; You, C.; Gao, C.; Haiyang, Y. Applications of Knitted Mesh Fabrication Techniques to Scaffolds for Tissue Engineering and Regenerative Medicine. J. Mech. Behav. Biomed. Mater. 2011, 4, 922–932. DOI: 10.1016/j.jmbbm.2011.04.009.
  • Hang, F.; Gupta, H. S.; Barber, A. H. Nanointerfacial Strength between Non-Collagenous Protein and Collagen Fibrils in Antler Bone. J. R. Soc. Interface. 2014, 11, 20130993. DOI: 10.1098/rsif.2013.0993.
  • Kim, G.; Son, J.; Park, S.; Kim, W. Hybrid Process for Fabricating 3D Hierarchical Scaffolds Combining Rapid Prototyping and Electrospinning. Macromol. Rapid Commun. 2008, 29, 1577–1581. DOI: 10.1002/marc.200800277.
  • Carlberg, Brn.; Wang, T.; Liu, J. Direct Photolithographic Patterning of Electrospun Films for Defined Nanofibrillar Microarchitectures. Langmuir. 2010, 26, 2235–2239. DOI: 10.1021/la9045447.
  • Bhushani, J. A.; Anandharamakrishnan, C. Electrospinning and Electrospraying Techniques: Potential Food Based Applications. Trends Food Sci. Technol. 2014, 38, 21–33. DOI: 10.1016/j.tifs.2014.03.004.
  • Kianfar, P.; Vitale, A.; Dalle Vacche, S.; Bongiovanni, R. Enhancing Properties and Water Resistance of PEO-Based Electrospun Nanofibrous Membranes by Photo-Crosslinking. J. Mater. Sci. 2021, 56, 1879–1896. DOI: 10.1007/s10853-020-05346-3.
  • Shao, Z.; Yu, L.; Xu, L.; Wang, M. High-Throughput Fabrication of Quality Nanofibers Using a Modified Free Surface Electrospinning. Nanoscale Res. Lett. 2017, 12, 1–9. DOI: 10.1186/s11671-017-2240-4.
  • Wilson, C.; de Bruijn, J. D.; Van Blitterswijk, C. A.; Verbout, A. J.; Dhert, W. J. A. Design and Fabrication of Standardized Hydroxyapatite Scaffolds with a Defined Macro-Architecture by Rapid Prototyping for Bone-Tissue-Engineering Research. J. Biomed. Mater. Res. A. 2004, 68, 123–132. DOI: 10.1002/jbm.a.20015.
  • Huang, B.; Aslan, E.; Jiang, Z.; Daskalakis, E.; Jiao, M.; Aldalbahi, A.; Vyas, C.; Bártolo, P. Engineered Dual-Scale Poly (ε-Caprolactone) Scaffolds Using 3D Printing and Rotational Electrospinning for Bone Tissue Regeneration. Addit. Manuf. 2020, 36, 101452. DOI: 10.1016/j.addma.2020.101452.
  • Sankar, S.; Kakunuri, M. D.; Eswaramoorthy, S.; Sharma, C. S.; Rath, S. N. Effect of Patterned Electrospun Hierarchical Structures on Alignment and Differentiation of Mesenchymal Stem Cells: Biomimicking Bone. J. Tissue Eng. Regener. Med. 2018, 12, e2073–e2084. DOI: 10.1002/term.2640.
  • Bashur, C. A.; Shaffer, R. D.; Dahlgren, L. A.; Guelcher, S. A.; Goldstein, A. S. Effect of Fiber Diameter and Alignment of Electrospun Polyurethane Meshes on Mesenchymal Progenitor Cells. Tissue Eng. A. 2009, 15, 2435–2445. DOI: 10.1089/ten.tea.2008.0295.
  • Santos, M. I.; Reis, R. L. Vascularization in Bone Tissue Engineering: Physiology, Current Strategies, Major Hurdles and Future Challenges. Macromol. Biosci. 2010, 10, 12–27. DOI: 10.1002/mabi.200900107.
  • Mi, Y. Y.; Trau, D.; Huang, P.; Chen, E. Micromolding of PDMS Scaffolds and Microwells for Tissue Culture and Cell Patterning: A New Method of Microfabrication by the Self-Assembled Micropatterns of Diblock Copolymer Micelles. Polymer. 2006, 47, 5124–5130. DOI: 10.1016/j.polymer.2006.04.063.
  • Ramier, J.; Bouderlique, T.; Stoilova, O.; Manolova, N.; Rashkov, I.; Langlois, V.; Renard, E.; Albanese, P.; Grande, D. Biocomposite Scaffolds Based on Electrospun Poly (3-Hydroxybutyrate) Nanofibers and Electrosprayed Hydroxyapatite Nanoparticles for Bone Tissue Engineering Applications. Mater. Sci. Eng. C. 2014, 38, 161–169. DOI: 10.1016/j.msec.2014.01.046.
  • Ferreira, P.; Santos, P.; Alves, P.; Carvalho, M. P.; de Sá, K. D.; Miguel, S. P.; Correia, I. J.; Coimbra, P. Photocrosslinkable Electrospun Fiber Meshes for Tissue Engineering Applications. Eur. Polym. J. 2017, 97, 210–219. DOI: 10.1016/j.eurpolymj.2017.10.018.
  • Wang, Y.; Ma, M.; Wang, J.; Zhang, W.; Lu, W.; Gao, Y.; Zhang, B.; Guo, Y. Development of a Photo-Crosslinking, Biodegradable GelMA/PEGDA Hydrogel for Guided Bone Regeneration Materials. Materials. 2018, 11, 1345. DOI: 10.3390/ma11081345.
  • Wang, Y.; Ma, M.; Zhang, L.; Gao, Y.; Zhang, B.; Guo, Y. Fabrication of Bi-Layer Photocrosslinked GelMA/PEGDA Fibrous Membrane for Guided Bone Regeneration Materials. Mater. Lett. 2019, 249, 112–115. DOI: 10.1016/j.matlet.2019.04.076.
  • Yang, R.; He, J.; Xu, L.; Yu, J. Bubble-Electrospinning for Fabricating Nanofibers. Polymer. 2009, 50, 5846–5850. DOI: 10.1016/j.polymer.2009.10.021.
  • He, J.-H.; Kong, H. Y.; Yang, R. R.; Dou, H.; Faraz, N.; Wang, L.; Feng, C. Review on Fiber Morphology Obtained by Bubble Electrospinning and Blown Bubble Spinning. Therm. Sci. 2012, 16, 1263–1279. DOI: 10.2298/TSCI1205263H.
  • Liu, Y.; Dong, L.; Fan, J.; Wang, R.; Yu, J. Y. Effect of Applied Voltage on Diameter and Morphology of Ultrafine Fibers in Bubble Electrospinning. J. Appl. Polym. Sci. 2011, 120, 592–598. DOI: 10.1002/app.33203.
  • Fang, Y.; Xu, L.; Wang, M. High-Throughput Preparation of Silk Fibroin Nanofibers by Modified Bubble-Electrospinning. Nanomaterials. 2018, 8, 471. DOI: 10.3390/nano8070471.
  • Lin, J.; Wang, X.; Ding, B.; Yu, J.; Sun, G.; Wang, M. Biomimicry via Electrospinning. Crit. Rev. Solid State Mater. Sci. 2012, 37, 94–114. DOI: 10.1080/10408436.2011.627096.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.