347
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Telmisartan loaded polycaprolactone/gelatin-based electrospun vascular scaffolds

ORCID Icon & ORCID Icon
Pages 858-873 | Received 09 Oct 2020, Accepted 06 Apr 2021, Published online: 01 Jun 2021

References

  • Pashneh-Tala, S.; MacNeil, S.; Claeyssens, F. The Tissue-Engineered Vascular Graft - Past, Present, and Future. Tissue Eng. Part B Rev. 2016, 22, 68–100. DOI: 10.1089/ten.teb.2015.0100.
  • Hasan, A.; Memic, A.; Annabi, N.; Hossain, M.; Paul, A.; Dokmeci, M. R.; Dehghani, F.; Khademhosseini, A. Electrospun Scaffolds for Tissue Engineering of Vascular Grafts. Acta Biomater. 2014, 10, 11–25. DOI: 10.1016/j.actbio.2013.08.022.
  • Wise, S. G.; Byrom, M. J.; Waterhouse, A.; Bannon, P. G.; Ng, M. K. C.; Weiss, A. S. A Multilayered Synthetic Human Elastin/Polycaprolactone Hybrid Vascular Graft with Tailored Mechanical Properties. Acta Biomater. 2011, 7, 295–303.
  • Juthier, F.; Vincentelli, A.; Gaudric, J.; Corseaux, D.; Fouquet, O.; Calet, C.; Tourneau, T.; Le Soenen, V.; Zawadzki, C.; Fabre, O.; et al. Decellularized Heart Valve as a Scaffold for in Vivo Recellularization: Deleterious Effects of Granulocyte Colony-Stimulating Factor. J. Thorac. Cardiovasc. Surg. 2006, 131, 843–852. DOI: 10.1016/j.jtcvs.2005.11.037.
  • Kannan, R. Y.; Salacinski, H. J.; Butler, P. E.; Hamilton, G.; Seifalian, A. M. Current Status of Prosthetic Bypass Grafts: A Review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 74, 570–581.
  • Matsuzaki, Y.; John, K.; Shoji, T.; Shinoka, T. The Evolution of Tissue Engineered Vascular Graft Technologies: From Preclinical Trials to Advancing Patient Care. Appl. Sci. 2019, 9, 1274. DOI: 10.3390/app9071274.
  • Homann, M.; Haehnel, J. C.; Mendler, N.; Paek, S. U.; Holper, K.; Meisner, H.; Lange, R. Reconstruction of the RVOT with Valved Biological Conduits: 25 Years Experience with Allografts and Xenografts. Eur. J. Cardio-Thorac. Surg. 2000, 17, 624–630. DOI: 10.1016/S1010-7940(00)00414-0.
  • Giannico, S.; Hammad, F.; Amodeo, A.; Michielon, G.; Drago, F.; Turchetta, A.; Di Donato, R.; Sanders, S. P. Clinical Outcome of 193 Extracardiac Fontan Patients. J. Am. Coll. Cardiol. 2006, 47, 2065–2073. DOI: 10.1016/j.jacc.2005.12.065.
  • Drews, J. D.; Miyachi, H.; Shinoka, T. Tissue-Engineered Vascular Grafts for Congenital Cardiac Disease: Clinical Experience and Current Status. Trends Cardiovasc. Med. 2017, 27, 521–531. DOI: 10.1016/j.tcm.2017.06.013.
  • Xue, L.; Greisler, H. P. Biomaterials in the Development and Future of Vascular Grafts. J. Vasc. Surg. 2003, 37, 472–480. DOI: 10.1067/mva.2003.88.
  • Ratcliffe, A. Tissue Engineering of Vascular Grafts. Eur. Surg. Acta Chir. Austriaca. 2013, 45, 187–193.
  • Rüzgar, G.; Birer, M.; Tort, S.; Acartürk, F. Studies on Improvement of Water-Solubility of Curcumin with Electrospun Nanofibers. Fabad J. Pharm. Sci. 2013, 38, 143–149.
  • Turanlı, Y.; Tort, S.; Acartürk, F. Development and Characterization of Methylprednisolone Loaded Delayed Release Nanofibers. J. Drug Deliv. Sci. Technol. 2019, 49, 58–65. DOI: 10.1016/j.jddst.2018.10.031.
  • Tort, S.; Yıldız, A.; Tuğcu-Demiröz, F.; Akca, G.; Kuzukıran, Ö.; Acartürk, F. Development and Characterization of Rapid Dissolving Ornidazole Loaded PVP Electrospun Fibers. Pharm. Dev. Technol. 2019, 24, 864–873. DOI: 10.1080/10837450.2019.1615088.
  • Wang, W.; Caetano, G.; Ambler, W. S.; Blaker, J. J.; Frade, M. A.; Mandal, P.; Diver, C.; Bártolo, P. Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering. Materials. 2016, 9, 992.
  • Hu, Y. T.; Pan, X. D.; Zheng, J.; Ma, W. G.; Sun, L. Z. In Vitro and in Vivo Evaluation of a Small-Caliber Coaxial Electrospun Vascular Graft Loaded with Heparin and VEGF. Int. J. Surg. 2017, 44, 244–249. DOI: 10.1016/j.ijsu.2017.06.077.
  • Kumar, V. A.; Caves, J. M.; Haller, C. A.; Dai, E.; Liu, L.; Grainger, S.; Chaikof, E. L. Acellular Vascular Grafts Generated from Collagen and Elastin Analogs. Acta Biomater. 2013, 9, 8067–8074. DOI: 10.1016/j.actbio.2013.05.024.
  • Coimbra, P.; Santos, P.; Alves, P.; Miguel, S. P.; Carvalho, M. P.; de Sá, K. D.; Correia, I. J.; Ferreira, P. Coaxial Electrospun PCL/Gelatin-MA Fibers as Scaffolds for Vascular Tissue Engineering. Colloid. Surf. B Biointerfac. 2017, 159, 7–15. DOI: 10.1016/j.colsurfb.2017.07.065.
  • Huang, C.; Chen, R.; Ke, Q.; Morsi, Y.; Zhang, K.; Mo, X. Electrospun Collagen-Chitosan-TPU Nanofibrous Scaffolds for Tissue Engineered Tubular Grafts. Colloid. Surf. B Biointerface. 2011, 82, 307–315. DOI: 10.1016/j.colsurfb.2010.09.002.
  • Luong-Van, E.; Grøndahl, L.; Chua, K. N.; Leong, K. W.; Nurcombe, V.; Cool, S. M. Controlled Release of Heparin from Poly(ε-Caprolactone) Electrospun Fibers. Biomaterials. 2006, 27, 2042–2050. DOI: 10.1016/j.biomaterials.2005.10.028.
  • Rychter, M.; Baranowska-Korczyc, A.; Milanowski, B.; Jarek, M.; Maciejewska, B. M.; Coy, E. L.; Lulek, J. Cilostazol-Loaded Poly(ε-Caprolactone) Electrospun Drug Delivery System for Cardiovascular Applications. Pharm. Res. 2018, 35, 32.
  • Liu, Y.; Xiang, K.; Chen, H.; Li, Y.; Hu, Q. Composite Vascular Repair Grafts via Micro-Imprinting and Electrospinning. AIP Adv. 2015, 5, 041318.
  • Park, S.; Kim, J.; Lee, M. K.; Park, C.; Jung, H. D.; Kim, H. E.; Jang, T. S. Fabrication of Strong, Bioactive Vascular Grafts with PCL/Collagen and PCL/Silica Bilayers for Small-Diameter Vascular Applications. Mater. Des. 2019, 181, 108079.
  • Johnson, J.; Niehaus, A.; Nichols, S.; Lee, D.; Koepsel, J.; Anderson, D.; Lannutti, J. Electrospun PCL in Vitro: A Microstructural Basis for Mechanical Property Changes. J. Biomater. Sci. Polym. Ed. 2009, 20, 467–481. DOI: 10.1163/156856209X416485.
  • Pan, Y.; Zhou, X.; Wei, Y.; Zhang, Q.; Wang, T.; Zhu, M.; Li, W.; Huang, R.; Liu, R.; Chen, J.; et al. Small-Diameter Hybrid Vascular Grafts Composed of Polycaprolactone and Polydioxanone Fibers. Sci. Rep. 2017, 7, 1–11.
  • Powell, H. M.; Boyce, S. T. Fiber Density of Electrospun Gelatin Scaffolds Regulates Morphogenesis of Dermal-Epidermal Skin Substitutes. J. Biomed. Mater. Res. Part A. 2008, 84, 1078–1086.
  • Nagiah, N.; Johnson, R.; Anderson, R.; Elliott, W.; Tan, W. Highly Compliant Vascular Grafts with Gelatin-Sheathed Coaxially Structured Nanofibers. Langmuir. 2015, 31, 12993–13002. DOI: 10.1021/acs.langmuir.5b03177.
  • Elsayed, Y.; Lekakou, C.; Labeed, F.; Tomlins, P. Fabrication and Characterisation of Biomimetic, Electrospun Gelatin Fibre Scaffolds for Tunica Media-Equivalent, Tissue Engineered Vascular Grafts. Mater. Sci. Eng. C. 2016, 61, 473–483. DOI: 10.1016/j.msec.2015.12.081.
  • Losi, P.; Mancuso, L.; Al Kayal, T.; Celi, S.; Briganti, E.; Gualerzi, A.; Volpi, S.; Cao, G.; Soldani, G. Development of a Gelatin-Based Polyurethane Vascular Graft by Spray, Phase-Inversion Technology. Biomed. Mater. 2015, 10, 45014. DOI: 10.1088/1748-6041/10/4/045014.
  • Kown, M. H.; Yamaguchi, A.; Jahncke, C. L.; Miniati, D.; Murata, S.; Grunenfelder, J.; Koransky, M. L.; Rothbard, J. B.; Robbins, R. C. L-Arginine Polymers Inhibit the Development of Vein Graft Neointimal Hyperplasia. J. Thorac. Cardiovasc. Surg. 2001, 121, 971–980. DOI: 10.1067/mtc.2001.112532.
  • Witte, M. B.; Barbul, A. Role of Nitric Oxide in Wound Repair. Am. J. Surg. 2002, 183, 406–412. DOI: 10.1016/S0002-9610(02)00815-2.
  • Zhao, Y.; Vanhoutte, P. M.; Leung, S. W. S. Vascular Nitric Oxide: Beyond ENOS. J. Pharmacol. Sci. 2015, 129, 83–94. DOI: 10.1016/j.jphs.2015.09.002.
  • Sangwai, M.; Vavia, P. Amorphous Ternary Cyclodextrin Nanocomposites of Telmisartan for Oral Drug Delivery: Improved Solubility and Reduced Pharmacokinetic Variability. Int. J. Pharm. 2013, 453, 423–432. DOI: 10.1016/j.ijpharm.2012.08.034.
  • Benson, S. C.; Iguchi, R.; Ho, C. I.; Yamamoto, K.; Kurtz, T. W. Inhibition of Cardiovascular Cell Proliferation by Angiotensin Receptor Blockers: Are All Molecules the Same? J. Hypertens. 2008, 26, 973–980. DOI: 10.1097/HJH.0b013e3282f56ba5.
  • Scalera, F.; Martens-Lobenhoffer, J.; Bukowska, A.; Lendeckel, U.; Täger, M.; Bode-Böger, S. M. Effect of Telmisartan on Nitric Oxide-Asymmetrical Dimethylarginine System: Role of Angiotensin II Type 1 Receptor and Peroxisome Proliferator Activated Receptor γ Signaling during Endothelial Aging. Hypertension. 2008, 51, 696–703. DOI: 10.1161/HYPERTENSIONAHA.107.104570.
  • Cianchetti, S.; Del Fiorentino, A.; Colognato, R.; Di Stefano, R.; Franzoni, F.; Pedrinelli, R. Anti-Inflammatory and Anti-Oxidant Properties of Telmisartan in Cultured Human Umbilical Vein Endothelial Cells. Atherosclerosis 2008, 198, 22–28. DOI: 10.1016/j.atherosclerosis.2007.09.013.
  • Myojo, M.; Nagata, D.; Fujita, D.; Kiyosue, A.; Takahashi, M.; Satonaka, H.; Morishita, Y.; Akimoto, T.; Nagai, R.; Komuro, I.; et al. Telmisartan Activates Endothelial Nitric Oxide Synthase via Ser1177 Phosphorylation in Vascular Endothelial Cells. PLOS One. 2014, 9, 1–10.
  • Chaudagar, K. K.; Mehta, A. A. Effect of Telmisartan on VEGF-Induced and VEGF-Independent Angiogenic Responsiveness of Coronary Endothelial Cells in Normal and Streptozotocin (STZ)-Induced Diabetic Rats. Clin. Exp. Hypertens. 2014, 36, 557–566. DOI: 10.3109/10641963.2014.881842.
  • Kurokawa, H.; Sugiyama, S.; Nozaki, T.; Sugamura, K.; Toyama, K.; Matsubara, J.; Fujisue, K.; Ohba, K.; Maeda, H.; Konishi, M.; et al. Telmisartan Enhances Mitochondrial Activity and Alters Cellular Functions in Human Coronary Artery Endothelial Cells via AMP-Activated Protein Kinase Pathway. Atherosclerosis. 2015, 239, 375–385. DOI: 10.1016/j.atherosclerosis.2015.01.037.
  • Siragusa, M.; Sessa, W. C. Telmisartan Exerts Pleiotropic Effects in Endothelial Cells and Promotes Endothelial Cell Quiescence and Survival. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1852–1860. DOI: 10.1161/ATVBAHA.112.300985.
  • Shi, Y.; Patel, S.; Davenpeck, K. L.; Niculescu, R.; Rodriguez, E.; Magno, M. G.; Ormont, M. L.; Mannion, J. D.; Zalewski, A. Comparison between Venous and Arterial Conduits. Circulation. 2001, 103, 2408–2413. DOI: 10.1161/01.CIR.103.19.2408.
  • Jiang, B.; Suen, R.; Wang, J. J.; Zhang, Z. J.; Wertheim, J. A.; Ameer, G. A. Vascular Scaffolds with Enhanced Antioxidant Activity Inhibit Graft Calcification. Biomaterials. 2017, 144, 166–175. DOI: 10.1016/j.biomaterials.2017.08.014.
  • Fathy, M.; Khalifa, E. M. M. A.; Fawzy, M. A. Modulation of Inducible Nitric Oxide Synthase Pathway by Eugenol and Telmisartan in Carbon Tetrachloride-Induced Liver Injury in Rats. Life Sci. 2019, 216, 207–214. DOI: 10.1016/j.lfs.2018.11.031.
  • Saber, S.; Basuony, M.; Eldin, A. S. Telmisartan Ameliorates Dextran Sodium Sulfate-Induced Colitis in Rats by Modulating NF-ΚB Signalling in the Context of PPARγ Agonistic Activity. Arch. Biochem. Biophys. 2019, 671, 185–195. DOI: 10.1016/j.abb.2019.07.014.
  • Sukumaran, V.; Watanabe, K.; Veeraveedu, P. T.; Ma, M.; Gurusamy, N.; Rajavel, V.; Suzuki, K.; Yamaguchi, K.; Kodama, M.; Aizawa, Y. Telmisartan Ameliorates Experimental Autoimmune Myocarditis Associated with Inhibition of Inflammation and Oxidative Stress. Eur. J. Pharmacol. 2011, 652, 126–135. DOI: 10.1016/j.ejphar.2010.10.081.
  • Pelliccia, F.; Pasceri, V.; Cianfrocca, C.; Vitale, C.; Speciale, G.; Gaudio, C.; Rosano, G. M. C.; Mercuro, G. Angiotensin II Receptor Antagonism with Telmisartan Increases Number of Endothelial Progenitor Cells in Normotensive Patients with Coronary Artery Disease: A Randomized, Double-Blind, Placebo-Controlled Study. Atherosclerosis. 2010, 210, 510–515. DOI: 10.1016/j.atherosclerosis.2009.12.005.
  • Lee, S. J.; Liu, J.; Oh, S. H.; Soker, S.; Atala, A.; Yoo, J. J. Development of a Composite Vascular Scaffolding System That Withstands Physiological Vascular Conditions. Biomaterials 2008, 29, 2891–2898. DOI: 10.1016/j.biomaterials.2008.03.032.
  • Ciardelli, G.; Chiono, V.; Vozzi, G.; Pracella, M.; Ahluwalia, A.; Barbani, N.; Cristallini, C.; Giusti, P. Blends of Poly-(ε-Caprolactone) and Polysaccharides in Tissue Engineering Applications. Biomacromolecules. 2005, 6, 1961–1976. DOI: 10.1021/bm0500805.
  • Sridhar, R.; Ravanan, S.; Venugopal, J. R.; Sundarrajan, S.; Pliszka, D.; Sivasubramanian, S.; Gunasekaran, P.; Prabhakaran, M.; Madhaiyan, K.; Sahayaraj, A.; et al. Curcumin-and Natural Extract-Loaded Nanofibres for Potential Treatment of Lung and Breast Cancer: In Vitro Efficacy Evaluation. J. Biomater. Sci. Polym. Ed. 2014, 25, 985–998. DOI: 10.1080/09205063.2014.917039.
  • Del Gaudio, C.; Ercolani, E.; Galloni, P.; Santilli, F.; Baiguera, S.; Polizzi, L.; Bianco, A. Aspirin-Loaded Electrospun Poly(ε-Caprolactone) Tubular Scaffolds: Potential Small-Diameter Vascular Grafts for Thrombosis Prevention. J. Mater. Sci. Mater. Med. 2013, 24, 523–532. DOI: 10.1007/s10856-012-4803-3.
  • Yokoyama, J.; Higuma, T.; Tomita, H.; Abe, N.; Oikawa, K.; Fujiwara, T.; Yokota, T.; Yokoyama, H.; Kimura, M.; Sasaki, S.; et al. Impact of Telmisartan on Coronary Stenting in Patients with Acute Myocardial Infarction Compared with Enalapril. Int. J. Cardiol. 2009, 132, 114–120. DOI: 10.1016/j.ijcard.2007.11.003.
  • Weatherbee-Martin, N.; Xu, L.; Hupe, A.; Kreplak, L.; Fudge, D. S.; Liu, X. Q.; Rainey, J. K. Identification of Wet-Spinning and Post-Spin Stretching Methods Amenable to Recombinant Spider Aciniform Silk. Biomacromolecules. 2016, 17, 2737–2746. DOI: 10.1021/acs.biomac.6b00857.
  • Liu, H.; G. Effectiveness Of, C. The Young-Laplace Equation at. Nanoscale. Sci. Rep. 2016, 6, 1–10.
  • Ghasemi-Mobarakeh, L.; Semnani, D.; Morshed, M. A Novel Method for Porosity Measurement of Various Surface Layers of Nanofibers Mat Using Image Analysis for Tissue Engineering Applications. J. Appl. Polym. Sci. 2007, 106, 2536–2542. DOI: 10.1002/app.26949.
  • Hartman, O.; Zhang, C.; Adams, E. L.; Farach-Carson, M. C.; Petrelli, N. J.; Chase, B. D.; Rabolt, J. F. Biofunctionalization of Electrospun PCL-Based Scaffolds with Perlecan Domain IV Peptide to Create a 3-D Pharmacokinetic Cancer Model. Biomaterials. 2010, 31, 5700–5718. DOI: 10.1016/j.biomaterials.2010.03.017.
  • Ferreira, J. L.; Gomes, S.; Henriques, C.; Borges, P.; Silva, J. C.; Gomes, S. Electrospinning Polycaprolactone Dissolved in Glacial Acetic Acid: Fiber Production, Nonwoven Characterization, and In Vitro Evaluation. J. Appl. Polym. Sci. 2014, 131, 37–39.
  • Wang, K.; Zhu, M.; Zheng, W.; Zhao, Q. Improvement of Cell Infiltration in Electrospun Polycaprolactone Scaffolds for the Construction of Vascular Grafts. J. Biomed. Nanotechnol. 2014, 10, 1588–1598. DOI: 10.1166/jbn.2014.1849.
  • Fu, W.; Liu, Z.; Feng, B.; Hu, R.; He, X.; Wang, H.; Yin, M.; Huang, H.; Zhang, H.; Wang, W. Electrospun Gelatin/PCL and Collagen/PLCL Scaffolds for Vascular Tissue Engineering. Int. J. Nanomedicine. 2014, 9, 2335–2344.
  • Ghasemi-Mobarakeh, L.; Prabhakaran, M. P.; Morshed, M.; Nasr-Esfahani, M. H.; Ramakrishna, S. Electrospun Poly(ε-Caprolactone)/Gelatin Nanofibrous Scaffolds for Nerve Tissue Engineering. Biomaterials. 2008, 29, 4532–4539. DOI: 10.1016/j.biomaterials.2008.08.007.
  • Song, J. H.; Kim, H. E.; Kim, H. W. Production of Electrospun Gelatin Nanofiber by Water-Based Co-Solvent Approach. J. Mater. Sci. Mater. Med. 2008, 19, 95–102. DOI: 10.1007/s10856-007-3169-4.
  • Ki, C. S.; Baek, D. H.; Gang, K. D.; Lee, K. H.; Um, I. C.; Park, Y. H. Characterization of Gelatin Nanofiber Prepared from Gelatin-Formic Acid Solution. Polymer. 2005, 46, 5094–5102. DOI: 10.1016/j.polymer.2005.04.040.
  • Tort, S.; Acartürk, F. Preparation and Characterization of Electrospun Nanofibers Containing Glutamine. Carbohydr. Polym. 2016, 152, 802–814. DOI: 10.1016/j.carbpol.2016.07.028.
  • Oraby, M. A.; Waley, A. I.; El-Dewany, A. I.; Saad, E. A.; El-Hady, M. A. Electrospun Gelatin Nanofibers: Effect of Gelatin Concentration on Morphology and Fiber Diameters. Polym. J. 2013, 9, 534.
  • Angammana, C. J.; Jayaram, S. H. Analysis of the Effects of Solution Conductivity on Electrospinning Process and Fiber Morphology. IEEE Trans. Ind. Appl. 2011, 47, 1109–1117. DOI: 10.1109/TIA.2011.2127431.
  • Amariei, N.; Manea, L. R.; Bertea, A. P.; Bertea, A.; Popa, A. The Influence of Polymer Solution on the Properties of Electrospun 3D Nanostructures. IOP Conference Series: Materials Science and Engineering, Vol. 209, Iasi, Romania, May 25–26, 2017.
  • Qin, X.; Wu, D. Effect of Different Solvents on Poly(Caprolactone)(PCL) Electrospun Nonwoven Membranes. J. Therm. Anal. Calorim. 2012, 107, 1007–1013. DOI: 10.1007/s10973-011-1640-4.
  • Moffat, K. L.; Kwei, A. S. P.; Spalazzi, J. P.; Doty, S. B.; Levine, W. N.; Lu, H. H. Novel Nanofiber-Based Scaffold for Rotator Cuff Repair and Augmentation. Tissue Eng. Part A. 2009, 15, 115–126. DOI: 10.1089/ten.tea.2008.0014.
  • Park, J.; Park, H. J.; Cho, W.; Cha, K. H.; Yeon, W.; Kim, M. S.; Kim, J. S.; Hwang, S. J. Comparative Study of Telmisartan Tablets Prepared via the Wet Granulation Method and PritorTM Prepared Using the Spray-Drying Method. Arch. Pharm. Res. 2011, 34, 463–468. DOI: 10.1007/s12272-011-0315-9.
  • Huang, A.; Jiang, Y.; Napiwocki, B.; Mi, H.; Peng, X.; Turng, L. S. Fabrication of Poly(ϵ-Caprolactone) Tissue Engineering Scaffolds with Fibrillated and Interconnected Pores Utilizing Microcellular Injection Molding and Polymer Leaching. RSC Adv. 2017, 7, 43432–43444. DOI: 10.1039/C7RA06987A.
  • Shoja, M.; Shameli, K.; Ahmad, M. B.; Zakaria, Z. Preparation and Characterization of Poly (ε-Caprolactone)/Tio2 Micro-Composites. Dig. J. Nanomater. Biostructures. 2015, 10, 471–477.
  • Bagheri, M.; Mahmoodzadeh, A. Polycaprolactone/Graphene Nanocomposites: Synthesis, Characterization and Mechanical Properties of Electrospun Nanofibers. J. Inorg. Organomet. Polym. Mater. 2020, 30, 1566–1577. DOI: 10.1007/s10904-019-01340-8.
  • Cebi, N.; Durak, M. Z.; Toker, O. S.; Sagdic, O.; Arici, M. An Evaluation of Fourier Transforms Infrared Spectroscopy Method for the Classification and Discrimination of Bovine, Porcine and Fish Gelatins. Food Chem. 2016, 190, 1109–1115. DOI: 10.1016/j.foodchem.2015.06.065.
  • Patel, H.; Patel, H.; Gohel, M.; Tiwari, S. Dissolution Rate Improvement of Telmisartan through Modified MCC Pellets Using 32 Full Factorial Design. Saudi Pharm. J. 2016, 24, 579–587. DOI: 10.1016/j.jsps.2015.03.007.
  • Sharma, C.; Desai, M. A.; Patel, S. R. Effect of Surfactants and Polymers on Morphology and Particle Size of Telmisartan in Ultrasound-Assisted anti-Solvent Crystallization. Chem. Pap. 2019, 73, 1685–1694. DOI: 10.1007/s11696-019-00720-1.
  • Chella, N.; Narra, N.; Rama Rao, T. Preparation and Characterization of Liquisolid Compacts for Improved Dissolution of Telmisartan. J. Drug Deliv. 2014, 2014, 1–10. DOI: 10.1155/2014/692793.
  • Tran, P. H. L.; Tran, H. T. T.; Lee, B. J. Modulation of Microenvironmental PH and Crystallinity of Ionizable Telmisartan Using Alkalizers in Solid Dispersions for Controlled Release. J. Control. Release. 2008, 129, 59–65. DOI: 10.1016/j.jconrel.2008.04.001.
  • Balu, R.; Sampath Kumar, T. S.; Ramalingam, M.; Ramakrishna, S. Electrospun Polycaprolactone/Poly(1,4-Butylene Adipate-Co-Polycaprolactam) Blends: Potential Biodegradable Scaffold for Bone Tissue Regeneration. J. Biomater. Tissue Eng. 2011, 1, 30–39. DOI: 10.1166/jbt.2011.1004.
  • Gautam, S.; Dinda, A. K.; Mishra, N. C. Fabrication and Characterization of PCL/Gelatin Composite Nanofibrous Scaffold for Tissue Engineering Applications by Electrospinning Method. Mater. Sci. Eng. C. 2013, 33, 1228–1235. DOI: 10.1016/j.msec.2012.12.015.
  • Greiner, A.; Wendorff, J. H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem. Int. Ed. 2007, 46, 5670–5703. DOI: 10.1002/anie.200604646.
  • Mauri, A.; Zeisberger, S. M.; Hoerstrup, S. P.; Mazza, E. Analysis of the Uniaxial and Multiaxial Mechanical Response of a Tissue-Engineered Vascular Graft. Tissue Eng. Part A. 2013, 19, 583–592. DOI: 10.1089/ten.tea.2012.0075.
  • Stekelenburg, M.; Rutten, M. C. M.; Snoeckx, L. H. E. H.; Baaijens, F. P. T. Dynamic Straining Combined with Fibrin Gel Cell Seeding Improves Strength of Tissue-Engineered Small-Diameter Vascular Grafts. Tissue Eng. Part A. 2009, 15, 1081–1089. DOI: 10.1089/ten.tea.2008.0183.
  • Yao, Y.; Wang, J.; Cui, Y.; Xu, R.; Wang, Z.; Zhang, J.; Wang, K.; Li, Y.; Zhao, Q.; Kong, D. Effect of Sustained Heparin Release from PCL/Chitosan Hybrid Small-Diameter Vascular Grafts on anti-Thrombogenic Property and Endothelialization. Acta Biomater. 2014, 10, 2739–2749. DOI: 10.1016/j.actbio.2014.02.042.
  • Mirbagheri, M.; Mohebbi-Kalhori, D.; Jirofti, N. Evaluation of Mechanical Properties and Medical Applications of Polycaprolactone Small Diameter Artificial Blood Vessels. Int. J. Basic Sci. Med. 2017, 2, 58–70. DOI: 10.15171/ijbsm.2017.12.
  • Fukunishi, T.; Best, C. A.; Sugiura, T.; Shoji, T.; Yi, T.; Udelsman, B.; Ohst, D.; Ong, C. S.; Zhang, H.; Shinoka, T.; et al. Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model. PLOS One 2016, 11, 1–15.
  • Chen, X.; Wang, J.; An, Q.; Li, D.; Liu, P.; Zhu, W.; Mo, X. Electrospun Poly(l-Lactic Acid-Co-E{Open}-Caprolactone) Fibers Loaded with Heparin and Vascular Endothelial Growth Factor to Improve Blood Compatibility and Endothelial Progenitor Cell Proliferation. Colloid. Surf. B Biointerface. 2015, 128, 106–114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.