1,867
Views
52
CrossRef citations to date
0
Altmetric
Review

Poly lactic acid (PLA) polymers: from properties to biomedical applications

&
Pages 1117-1130 | Received 15 Mar 2021, Accepted 14 Jun 2021, Published online: 13 Jul 2021

References

  • Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic Acid (PLA) Controlled Delivery Carriers for Biomedical Applications. Adv. Drug. Deliv. Rev. 2016, 107, 163–175. DOI: 10.1016/j.addr.2016.06.018.
  • Chia, H. N.; Wu, B. M. Recent Advances in 3D Printing of Biomaterials. J. Biol. Eng. 2015, 9, 4. DOI: 10.1186/s13036-015-0001-4.
  • Farah, S.; Anderson, D. G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications – A comprehensive review. Adv. Drug. Deliv. Rev. 2016, 107, 367–392. DOI: 10.1016/j.addr.2016.06.012.
  • Singh, S.; Ramakrishna, S.; Singh, R. Material Issues in Additive Manufacturing: A Review. J. Manuf. Processes. 2017, 25, 185–200. DOI: 10.1016/j.jmapro.2016.11.006.
  • Middleton, J. C.; Tipton, A. J. Synthetic Biodegradable Polymers as Orthopedic Devices. Biomaterials. 2000, 21, 2335–2346. DOI: 10.1016/S0142-9612(00)00101-0.
  • Auras, R.; Harte, B.; Selke, S. An Overview of Polylactides as Packaging Materials. Macromol. Biosci. 2004, 4, 835–864. DOI: 10.1002/mabi.200400043.
  • Tsuji, H.; Ikada, Y. Properties and Morphology of Poly (l -Lactide) 4. Effects of Structural Parameters on Long-Term Hydrolysis of Poly (l -Lactide) in Phosphate-Buffered Solution. Polym. Degrad. Stab. 2000, 67, 179–189. DOI: 10.1016/S0141-3910(99)00111-1.
  • Gunatillake, P. A.; Adhikari, R, CSIRO Molecular Science, Bag 10, Clayton South MDC, Vic 3169, Australia. Biodegradable Synthetic Polymers for Tissue Engineering. Eur. Cell. Mater. 2003, 5, 1–16. DOI: 10.22203/eCM.v005a01.
  • Liao, H.-T.; Wu, C.-S. Preparation and Characterization of Ternary Blends Composed of Polylactide, Poly(ɛ-Caprolactone) and Starch. Mater. Sci. Eng.: A. 2009, 515, 207–214. DOI: 10.1016/j.msea.2009.03.003.
  • Park, S.-B.; Lih, E.; Park, K.-S.; Joung, Y. K.; Han, D. K. Biopolymer-Based Functional Composites for Medical Applications. Prog. Polym. Sci. 2017, 68, 77–105. DOI: 10.1016/j.progpolymsci.2016.12.003.
  • Cong, Q.; Lin, L.; Qi, B.; Xu, C.; Zhang, X. Human Chorionic Gonadotropin Polypeptide Nanoparticle Drug Delivery System Improves Methotrexate Efficacy in Gestational Trophoblastic Neoplasia in Vitro. Cancer. Manag. Res. 2021, 13, 1699–1708. DOI: 10.2147/CMAR.S279831.
  • do Reis, S. R. R.; Helal-Neto, E.; da Silva de Barros, A. O.; Pinto, S. R.; Portilho, F. L.; de Oliveira Siqueira, L. B.; Alencar, L. M. R.; Dahoumane, S. A.; Alexis, F.; Ricci-Junior, E.; Santos-Oliveira, R. Dual Encapsulated Dacarbazine and Zinc Phthalocyanine Polymeric Nanoparticle for Photodynamic Therapy of Melanoma. Pharm. Res. 2021, 38, 335–346. DOI: 10.1007/s11095-021-02999-w.
  • Ayad, C.; Libeau, P.; Lacroix-Gimon, C.; Ladavière, C.; Verrier, B. LipoParticles: Lipid-Coated PLA Nanoparticles Enhanced in Vitro mRNA Transfection Compared to Liposomes. Pharmaceutics. 2021, 13, 377. DOI: 10.3390/pharmaceutics13030377.
  • Khanizadeh, L.; Sarvari, R.; Massoumi, B.; Agbolaghi, S.; Beygi-Khosrowshahi, Y. Dual Nano-Carriers Using Polylactide-block-Poly(N-Isopropylacrylamide-Random-Acrylic Acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications. J. Ultrafine. Grained. Nanostruct. Mater. 2020, 53, 60–70. DOI:10.22059/jufgnsm.2020.01.08.
  • Sarvari, R.; Nouri, M.; Agbolaghi, S.; Roshangar, L.; Sadrhaghighi, A.; Seifalian, A. M.; Keyhanvar, P. A Summary on Non-Viral Systems for Gene Delivery Based on Natural and Synthetic Polymers. Int. J. Polym. Mater. Polym. Biomater. 2020, 10, 1–20. DOI: 10.1080/00914037.2020.1825081.
  • Lunt, J. Large-Scale Production, Properties and Commercial Applications of Polylactic Acid Polymers. Polym. Degrad. Stab. 1998, 59, 145–152. DOI: 10.1016/S0141-3910(97)00148-1.
  • Södergård, A.; Stolt, M. Properties of Lactic Acid Based Polymers and Their Correlation with Composition. Prog. Polym. Sci. 2002, 27, 1123–1163. DOI: 10.1016/S0079-6700(02)00012-6.
  • Vasenina, I. V.; Laput, O. A.; Kurzina, I. A. Regularities of PLA Mechanical Property Modification under Ion Implantation Conditions. Vacuum. 2021, 187, 110105. DOI: 10.1016/j.vacuum.2021.110105.
  • Oksiuta, Z.; Jalbrzykowski, M.; Mystkowska, J.; Romanczuk, E.; Osiecki, T. Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. Polymers 2020, 12, 2939. DOI: 10.3390/polym12122939.
  • Cheng, Y.; Deng, S.; Chen, P.; Ruan, R. Polylactic Acid (PLA) Synthesis and Modifications: A Review. Front. Chem. China 2009, 4, 259–264. DOI: 10.1007/s11458-009-0092-x.
  • Gupta, B.; Revagade, N.; Hilborn, J. Poly(Lactic Acid) Fiber: An Overview. Prog. Polym. Sci. 2007, 32, 455–482. DOI: 10.1016/j.progpolymsci.2007.01.005.
  • Brounstein, Z.; Yeager, C. M.; Labouriau, A. Development of Antimicrobial PLA Composites for Fused Filament Fabrication. Polymers. 2021, 13, 580. DOI: 10.3390/polym13040580.
  • Vieira, A. C.; Vieira, J. C.; Ferra, J. M.; Magalhães, F. D.; Guedes, R. M.; Marques, A. T. Mechanical Study of PLA-PCL Fibers During in vitro Degradation. J. Mech. Behav. Biomed. Mater. 2011, 4, 451–460. DOI: 10.1016/j.jmbbm.2010.12.006.
  • Mofokeng, J. P.; Luyt, A. S. Dynamic Mechanical Properties of PLA/PHBV, PLA/PCL, PHBV/PCL Blends and Their Nanocomposites with TiO2 as Nanofiller. Thermochim. Acta. 2015, 613, 41–53. DOI: 10.1016/j.tca.2015.05.019.
  • Ahmed, F.; Discher, D. E. Self-porating polymersomes of PEG-PLA and PEG-PCL: Hydrolysis-Triggered Controlled Release Vesicles. J. Control. Release. 2004, 96, 37–53. DOI: 10.1016/j.jconrel.2003.12.021.
  • Toncheva, A.; Mincheva, R.; Kancheva, M.; Manolova, N.; Rashkov, I.; Dubois, P.; Markova, N. Antibacterial PLA/PEG Electrospun Fibers: Comparative Study between Grafting and Blending PEG. Eur. Polym. J. 2016, 75, 223–233. DOI: 10.1016/j.eurpolymj.2015.12.019.
  • Liao, S.; Chan, C. K.; Ramakrishna, S. Stem Cells and Biomimetic Materials Strategies for Tissue Engineering. Mater. Sci. Eng. C. 2008, 28, 1189–1202. DOI: 10.1016/j.msec.2008.08.015.
  • Madhavan Nampoothiri, K.; Nair, N. R.; John, R. P. An Overview of the Recent Developments in Polylactide (PLA) Research. Bioresour. Technol. 2010, 101, 8493–8501. DOI: 10.1016/j.biortech.2010.05.092.
  • Öcal, H.; Arıca-Yegin, B.; Vural, İ.; Goracinova, K.; Çalış, S. 5-Fluorouracil-Loaded PLA/PLGA PEG-PPG-PEG Polymeric Nanoparticles: Formulation, In Vitro Characterization and Cell Culture Studies. Drug. Dev. Ind. Pharm. 2014, 40, 560–567. DOI: 10.3109/03639045.2013.775581.
  • Yallapu, M. M.; Gupta, B. K.; Jaggi, M.; Chauhan, S. C. Fabrication of Curcumin Encapsulated PLGA Nanoparticles for Improved Therapeutic Effects in Metastatic Cancer Cells. J. Colloid. Interface. Sci. 2010, 351, 19–29. DOI: 10.1016/j.jcis.2010.05.022.
  • Hanlon, D. J.; Aldo, P. B.; Devine, L.; Alvero, A. B.; Engberg, A. K.; Edelson, R.; Mor, G. Enhanced Stimulation of Anti-Ovarian Cancer CD8(+) T Cells by Dendritic Cells Loaded with Nanoparticle Encapsulated Tumor Antigen. Am. J. Reprod. Immunol. 2011, 65, 597–609. DOI: 10.1111/j.1600-0897.2010.00968.x.
  • Pandey, S. K.; Ghosh, S.; Maiti, P.; Haldar, C. Therapeutic Efficacy and Toxicity of Tamoxifen Loaded PLA Nanoparticles for Breast Cancer. Int. J. Biol. Macromol. 2015, 72, 309–319. DOI: 10.1016/j.ijbiomac.2014.08.012.
  • Sadeghi, I.; Byrne, J.; Shakur, R.; Langer, R. Engineered Drug Delivery Devices to Address Global Health Challenges. J. Control. Release. 2021, 331, 503–514. DOI: 10.1016/j.jconrel.2021.01.035.
  • Shah, D. U. Damage in Biocomposites: Stiffness Evolution of Aligned Plant Fibre Composites during Monotonic and Cyclic Fatigue Loading. Composites Part A: Appl. Sci. Manufact. 2016, 83, 160–168. DOI: 10.1016/j.compositesa.2015.09.008.
  • Jamshidian, M.; Tehrany, E. A.; Imran, M.; Jacquot, M.; Desobry, S. Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food. Sci. Food. Saf. 2010, 9, 552–571. DOI: 10.1111/j.1541-4337.2010.00126.x.
  • Zhou, W. Y.; Lee, S. H.; Wang, M.; Cheung, W. L.; Ip, W. Y. Selective Laser Sintering of Porous Tissue Engineering Scaffolds from Poly(L: -lactide)/Carbonated Hydroxyapatite Nanocomposite Microspheres. J. Mater. Sci. Mater. Med. 2008, 19, 2535–2540. DOI: 10.1007/s10856-007-3089-3.
  • Sarvari, R.; Keyhanvar, P.; Agbolaghi, S.; Gholami Farashah, M. S.; Sadrhaghighi, A.; Nouri, M.; Roshangar, L. Shape-Memory Materials and Their Clinical Applications. Int. J. Polym. Mater. Polym. Biomater. 2020, 9, 1–20. DOI: 10.1080/00914037.2020.1833010.
  • Massoumi, B.; Sarvari, R.; Agbolaghi, S. Biodegradable and Conductive Hyperbranched Terpolymers Based on Aliphatic Polyester, Poly (D, L -Lactide), and Polyaniline Used as Scaffold in Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater.2018, 67, 808–821. DOI: 10.1080/00914037.2017.1383248.
  • Tan, M. L.; Choong, P. F. M.; Dass, C. R. Recent Developments in Liposomes, Microparticles and Nanoparticles for Protein and Peptide Drug Delivery. Peptides. 2010, 31, 184–193. DOI: 10.1016/j.peptides.2009.10.002.
  • Valantin, M.-A.; Aubron-Olivier, C.; Ghosn, J.; Laglenne, E.; Pauchard, M.; Schoen, H.; Bousquet, R.; Katz, P.; Costagliola, D.; Katlama, C. Polylactic Acid Implants (New-Fill)® to Correct Facial Lipoatrophy in HIV-Infected Patients: Results of the Open-Label Study VEGA. AIDS. 2003, 17, 2471–2477. DOI: 10.1097/00002030-200311210-00009.
  • Hamad, K.; Kaseem, M.; Yang, H. W.; Deri, F.; Ko, Y. G. Properties and Medical Applications of Polylactic Acid: A Review. Express. Polym. Lett. 2015, 9, 435–455. DOI: 10.3144/expresspolymlett.2015.42.
  • Qi, F.; Wu, J.; Li, H.; Ma, G. Recent Research and Development of PLGA/PLA Microspheres/Nanoparticles: A Review in Scientific and Industrial Aspects. Front. Chem. Sci. Eng. 2019, 13, 14–27. DOI: 10.1007/s11705-018-1729-4.
  • Ruan, G.; Feng, S.-S. Preparation and Characterization of Poly(Lactic Acid)–Poly(Ethylene Glycol)–Poly(Lactic Acid) (PLA–PEG–PLA) Microspheres for Controlled Release of Paclitaxel. Biomaterials. 2003, 24, 5037–5044. DOI: 10.1016/S0142-9612(03)00419-8.
  • Fishbein, I.; Chorny, M.; Rabinovich, L.; Banai, S.; Gati, I.; Golomb, G. Nanoparticulate Delivery System of a Tyrphostin for the Treatment of Restenosis. J. Control. Release. 2000, 65, 221–229. DOI: 10.1016/S0168-3659(99)00244-8.
  • Anderson, J. M.; Shive, M. S. Biodegradation and Biocompatibility of PLA and PLGA Microspheres. Adv. Drug Delivery Rev. 2012, 64, 72–82. DOI: 10.1016/j.addr.2012.09.004.
  • Householder, K. T.; DiPerna, D. M.; Chung, E. P.; Wohlleb, G. M.; Dhruv, H. D.; Berens, M. E.; Sirianni, R. W. Intravenous Delivery of Camptothecin-Loaded PLGA Nanoparticles for the Treatment of Intracranial Glioma. Int. J. Pharm. 2015, 479, 374–380. DOI: 10.1016/j.ijpharm.2015.01.002.
  • Cho, H.; Gao, J.; Kwon, G. S. PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery. J. Control. Release. 2016, 240, 191–201. DOI: 10.1016/j.jconrel.2015.12.015.
  • Sheikh, Z.; Najeeb, S.; Khurshid, Z.; Verma, V.; Rashid, H.; Glogauer, M. Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials. 2015, 8, 5744–5794. DOI: 10.3390/ma8095273.
  • Wu, S.; Zhou, R.; Zhou, F.; Streubel, P. N.; Chen, S.; Duan, B. Electrospun Thymosin Beta-4 Loaded PLGA/PLA Nanofiber/ Microfiber Hybrid Yarns for Tendon Tissue Engineering Application . Mater. Sci. Eng. C. Mater. Biol. Appl. 2020, 106, 110268. DOI: 10.1016/j.msec.2019.110268.
  • Bordes, P.; Pollet, E.; Averous, L. Nano-Biocomposites: Biodegradable Polyester/Nanoclay Systems. Prog. Polym. Sci. 2009, 34, 125–155. DOI: 10.1016/j.progpolymsci.2008.10.002.
  • Antunes, L. R.; Breitenbach, G. L.; Pellá, M. C. G.; Caetano, J.; Dragunski, D. C. Electrospun Poly(Lactic Acid) (PLA)/Poly(Butylene Adipate-co-Terephthalate) (PBAT) Nanofibers for the Controlled Release of Cilostazol. Int. J. Biol. Macromol. 2021, 182, 333–342. DOI: 10.1016/j.ijbiomac.2021.03.174.
  • Kao, C.-T.; Lin, C.-C.; Chen, Y.-W.; Yeh, C.-H.; Fang, H.-Y.; Shie, M.-Y. Poly(Dopamine) Coating of 3D Printed Poly(Lactic Acid) Scaffolds for Bone Tissue Engineering. Mater. Sci. Eng C. Mater. Biol. Appl. 2015, 56, 165–173. DOI: 10.1016/j.msec.2015.06.028.
  • Sherwood, J. K.; Riley, S. L.; Palazzolo, R.; Brown, S. C.; Monkhouse, D. C.; Coates, M.; Griffith, L. G.; Landeen, L. K.; Ratcliffe, A. A Three-Dimensional Osteochondral Composite Scaffold for Articular Cartilage Repair. Biomaterials. 2002, 23, 4739–4751. DOI: 10.1016/S0142-9612(02)00223-5.
  • Meyva‐Zeybek, Y.; Kaynak, C. A Comparative Study for the Behavior of 3D‐printed and Compression Molded PLA/POSS Nanocomposites. J. Appl. Polym. Sci. 2021, 138, 50246. DOI: 10.1002/app.50246.
  • Mitrin, B. I.; Chapek, S. V.; Sadyrin, E. V.; Swain, M. V. Mechanical Properties and Failure Mechanisms of 3D-Printed PLA Scaffolds: A Preliminary Study. IOP. Conf. Ser. Mater. Sci. Eng. 2021, 1029, 012074. DOI: 10.1088/1757-899X/1029/1/012074.
  • Baptista, R.; Guedes, M. Morphological and Mechanical Characterization of 3D Printed PLA Scaffolds with Controlled Porosity for Trabecular Bone Tissue Replacement. Mater. Sci. Eng. C. Mater. Biol. Appl. 2021, 118, 111528. DOI: 10.1016/j.msec.2020.111528.
  • Antich, C.; de Vicente, J.; Jiménez, G.; Chocarro, C.; Carrillo, E.; Montañez, E.; Gálvez-Martín, P.; Marchal, J. A. Bio-Inspired Hydrogel Composed of Hyaluronic Acid and Alginate as a Potential Bioink for 3D Bioprinting of Articular Cartilage Engineering Constructs. Acta. Biomater. 2020, 106, 114–123. DOI: 10.1016/j.actbio.2020.01.046.
  • Alizadeh-Osgouei, M.; Li, Y.; Vahid, A.; Ataee, A.; Wen, C. High Strength Porous PLA Gyroid Scaffolds Manufactured via Fused Deposition Modeling for Tissue-Engineering Applications. Smart. Mater. Med. 2021, 2, 15–25. DOI: 10.1016/j.smaim.2020.10.003.
  • Theus, A. S.; Ning, L.; Hwang, B.; Gil, C.; Chen, S.; Wombwell, A.; Mehta, R.; Serpooshan, V. Bioprintability: Physiomechanical and Biological Requirements of Materials for 3D Bioprinting Processes. Polymers. 2020, 12, 2262. DOI: 10.3390/polym12102262.
  • Mehta, R.; Kumar, V.; Bhunia, H.; Upadhyay, S. N. Synthesis of Poly(Lactic Acid): A Review. J. Macromol. Sci. Part C. Polym. Rev. 2005, 45, 325–349. DOI: 10.1080/15321790500304148.
  • Henton, D.; Gruber, P.; Lunt, J.; Randall, J. In Natural Fibers, Biopolymers, and Biocomposites; Mohanty, A., Misra, M., Drzal, L., Eds.; CRC Press: Boca Raton, 2005.
  • Jacobsen, S.; Fritz, H. G.; Degée, P.; Dubois, P.; Jérôme, R. Polylactide (PLA)-a New Way of Production: Polylactide (PLA)-a New Way of Production. Polym. Eng. Sci. 1999, 39, 1311–1319.
  • Blackburn, R. S. and E. Textile Institute (Manchester). Biodegradable and Sustainable Fibres; Lightning Source UK Ltd.: Cambridge; Milton Keynes UK, Woodhead, 2005.
  • Avinc, O.; Khoddami, A. Overview of Poly(Lactic Acid) (PLA) Fibre: Part I: Production, Properties, Performance, Environmental Impact, and End-Use Applications of Poly(Lactic Acid) Fibres. Fibre. Chem. 2009, 41, 391–401. DOI: 10.1007/s10692-010-9213-z.
  • Garlotta, D. A Literature Review of Poly(Lactic Acid). J. Polym. Environ. 2001, 9, 63–84. DOI: 10.1023/A:1020200822435.
  • Lim, L.-T.; Auras, R.; Rubino, M. Processing Technologies for Poly(Lactic Acid). Prog. Polym. Sci. 2008, 33, 820–852. DOI: 10.1016/j.progpolymsci.2008.05.004.
  • Murariu, M.; Dubois, P. PLA Composites: From Production to Properties. Adv. Drug. Deliv. Rev. 2016, 107, 17–46. DOI: 10.1016/j.addr.2016.04.003.
  • Dorgan, J. R.; Janzen, J.; Clayton, M. P.; Hait, S. B.; Knauss, D. M. Melt Rheology of Variable L -Content Poly(Lactic Acid). J. Rheol. 2005, 49, 607–619. DOI: 10.1122/1.1896957.
  • Fitz, B. D.; Jamiolkowski, D. D.; Andjelić, S. T g Depression in Poly (l (−)-Lactide) Crystallized under Partially Constrained Conditions. Macromolecules. 2002, 35, 5869–5872. DOI: 10.1021/ma020436u.
  • Joziasse, C. A. P.; Veenstra, H.; Grijpma, D. W.; Pennings, A. J. On the Chain Stiffness of Poly(Lactide)s. Macromol. Chem. Phys. 1996, 197, 2219–2229. DOI: 10.1002/macp.1996.021970713.
  • Lasprilla, A. J. R.; Martinez, G. A. R.; Lunelli, B. H.; Jardini, A. L.; Filho, R. M. Poly-Lactic Acid Synthesis for Application in Biomedical Devices – A Review. Biotechnol. Adv. 2012, 30, 321–328. DOI: 10.1016/j.biotechadv.2011.06.019.
  • Di Lorenzo, M. L. Crystallization Behavior of Poly(l-Lactic Acid). Eur. Polym. J. 2005, 41, 569–575. DOI: 10.1016/j.eurpolymj.2004.10.020.
  • Kolstad, J. J. Crystallization Kinetics of Poly(L‐Lactide‐co‐Meso‐Lactide). J. Appl. Polym. Sci. 1996, 62, 1079–1091. DOI: 10.1002/(SICI)1097-4628(19961114)62:7<1079::AID-APP14>3.0.CO;2-1.
  • Elsawy, M. A.; Kim, K.-H.; Park, J.-W.; Deep, A. Hydrolytic Degradation of Polylactic Acid (PLA) and Its Composites. Renewable. Sustainable. Energy. Rev. 2017, 79, 1346–1352. DOI: 10.1016/j.rser.2017.05.143.
  • Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic Acid Technology. Adv. Mater. 2000, 12, 1841–1846. DOI: 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E.
  • Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M. D. Biodegradable Polymers for Food Packaging: A Review. Trend. Food. Sci. Technol. 2008, 19, 634–643. DOI: 10.1016/j.tifs.2008.07.003.
  • Righetti, M.; Cinelli, P.; Mallegni, N.; Massa, C.; Bronco, S.; Stäbler, A.; Lazzeri, A. Thermal, Mechanical, and Rheological Properties of Biocomposites Made of Poly(Lactic Acid) and Potato Pulp Powder. IJMS. 2019, 20, 675. DOI: 10.3390/ijms20030675.
  • Ajioka, M.; Enomoto, K.; Suzuki, K.; Yamaguchi, A. The Basic Properties of Poly(Lactic Acid) Produced by the Direct Condensation Polymerization of Lactic Acid. J. Environ. Polym. Degr. 1995, 3, 225–234. DOI: 10.1007/BF02068677.
  • Li, X.; Gong, S.; Yang, L.; Zhang, F.; Xie, L.; Luo, Z.; Xia, X.; Wang, J. Study on the Degradation Behavior and Mechanism of Poly(Lactic Acid) Modification by Ferric Chloride. Polymer. 2020, 188, 121991. DOI: 10.1016/j.polymer.2019.121991.
  • Okamoto, M.; John, B. Synthetic Biopolymer Nanocomposites for Tissue Engineering Scaffolds. Prog. Polym. Sci. 2013, 38, 1487–1503. DOI: 10.1016/j.progpolymsci.2013.06.001.
  • Zhu, B.; Wang, Y.; Liu, H.; Ying, J.; Liu, C.; Shen, C. Effects of Interface Interaction and Microphase Dispersion on the Mechanical Properties of PCL/PLA/MMT Nanocomposites Visualized by Nanomechanical Mapping. Compos. Sci. Technol. 2020, 190, 108048. DOI: 10.1016/j.compscitech.2020.108048.
  • Lai, S.-M.; Lan, Y.-C. Shape Memory Properties of Melt-Blended Polylactic Acid (PLA)/Thermoplastic Polyurethane (TPU) Bio-Based Blends. J. Polym. Res. 2013, 20, 140. DOI: 10.1007/s10965-013-0140-6.
  • Irska, I.; Paszkiewicz, S.; Goracy, K.; Linares, A.; Ezquerra, T. A.; Jedrzejewski, R.; Roslaniec, Z.; Piesowicz, E. Poly(Butylene Terephthalate)/Polylactic Acid Based Copolyesters and Blends: miscibility-Structure-Property Relationship. Express. Polym. Lett. 2020, 14, 26–47. DOI: 10.3144/expresspolymlett.2020.4.
  • Modi, S.; Koelling, K.; Vodovotz, Y. Assessing the Mechanical, Phase Inversion, and Rheological Properties of Poly-[(R)-3-Hydroxybutyrate-co-(R)-3-Hydroxyvalerate] (PHBV) Blended with Poly-(l-Lactic Acid) (PLA). Eur. Polym. J. 2013, 49, 3681–3690. DOI: 10.1016/j.eurpolymj.2013.07.036.
  • Jalali Dil, E.; Carreau, P. J.; Favis, B. D. Morphology, Miscibility and Continuity Development in Poly(Lactic Acid)/Poly(Butylene Adipate-co-Terephthalate) Blends. Polymer. 2015, 68, 202–212. DOI: 10.1016/j.polymer.2015.05.012.
  • Li, H.; Huneault, M. A. Crystallization of PLA/Thermoplastic Starch Blends. IPP. 2008, 23, 412–418. DOI: 10.3139/217.2185.
  • Lv, S.; Zhang, Y.; Gu, J.; Tan, H. Biodegradation Behavior and Modelling of Soil Burial Effect on Degradation Rate of PLA Blended with Starch and Wood Flour. Colloids. Surf. B. Biointerfaces. 2017, 159, 800–808. DOI: 10.1016/j.colsurfb.2017.08.056.
  • Wang, Y.; Weng, Y.; Wang, L. Characterization of Interfacial Compatibility of Polylactic Acid and Bamboo Flour (PLA/BF) in Biocomposites. Polym. Test. 2014, 36, 119–125. DOI: 10.1016/j.polymertesting.2014.04.001.
  • Arrieta, M. P.; López, J.; Hernández, A.; Rayón, E. Ternary PLA–PHB–Limonene Blends Intended for Biodegradable Food Packaging Applications. Eur. Polym. J. 2014, 50, 255–270. DOI: 10.1016/j.eurpolymj.2013.11.009.
  • Park, S. B.; Hwang, S. Y.; Moon, C. W.; Im, S. S.; Yoo, E. S. Plasticizer Effect of Novel PBS Ionomer in PLA/PBS Ionomer Blends. Macromol. Res. 2010, 18, 463–471. DOI: 10.1007/s13233-010-0512-2.
  • Hong, K.; Nakayama, K.; Park, S. Effects of Protective Colloids on the Preparation of Poly(l-Lactide)/Poly(Butylene Succinate) Microcapsules. Eur. Polym. J. 2002, 38, 305–311. DOI: 10.1016/S0014-3057(01)00110-0.
  • Talbamrung, T.; Kasemsook, C.; Sangtean, W.; Wachirahuttapong, S.; Thongpin, C. Effect of Peroxide and Organoclay on Thermal and Mechanical Properties of PLA in PLA/NBR Melted Blend. Energy. Procedia. 2016, 89, 274–281. DOI: 10.1016/j.egypro.2016.05.035.
  • Maroufkhani, M.; Katbab, A.; Liu, W.; Zhang, J. Polylactide (PLA) and Acrylonitrile Butadiene Rubber (NBR) Blends: The Effect of ACN Content on Morphology, Compatibility and Mechanical Properties. Polymer. 2017, 115, 37–44. DOI: 10.1016/j.polymer.2017.03.025.
  • Yang, M.; Hu, J.; Xiong, N.; Xu, B.; Weng, Y.; Liu, Y. Preparation and Properties of PLA/PHBV/PBAT Blends 3D Printing Filament. Mater. Res. Express. 2019, 6, 065401. DOI: 10.1088/2053-1591/ab06cf.
  • Ji, A.; Zhang, S.; Bhagia, S.; Yoo, C. G.; Ragauskas, A. J. 3D Printing of Biomass-Derived Composites: application and Characterization Approaches. RSC. Adv. 2020, 10, 21698–21723. DOI: 10.1039/D0RA03620J.
  • Suryanegara, L.; Nakagaito, A. N.; Yano, H. The Effect of Crystallization of PLA on the Thermal and Mechanical Properties of Microfibrillated Cellulose-Reinforced PLA Composites. Compos. Sci. Technol. 2009, 69, 1187–1192. DOI: 10.1016/j.compscitech.2009.02.022.
  • Solorio-Rodríguez, L. E.; Vega-Rios, A. Filament Extrusion and Its 3D Printing of Poly(Lactic Acid)/Poly(Styrene-co-Methyl Methacrylate) Blends. Appl. Sci. 2019, 9, 5153. DOI: 10.3390/app9235153.
  • Müller, R. Biodegradability of Polymers: Regulations and Methods for Testing. Biopolymers Online: Biology Chemistry Biotechnology Applications, 1st ed.; Muller, R., Ed.; Wiley: Weinheim, 2005.
  • Yew, G. H.; Chow, W. S.; Mohd Ishak, Z. A.; Mohd Yusof, A. M. Natural Weathering of Poly (Lactic Acid): Effects of Rice Starch and Epoxidized Natural Rubber. J. Elastom. Plast. 2009, 41, 369–382. DOI: 10.1177/0095244309103663.
  • Cai, H.; Dave, V.; Gross, R. A.; McCarthy, S. P. Effects of Physical Aging, Crystallinity, and Orientation on the Enzymatic Degradation of Poly(Lactic Acid). J. Polym. Sci. B Polym. Phys. 1996, 34, 2701–2708.
  • Cha, Y.; Pitt, C. G. The Biodegradability of Polyester Blends. Biomaterials. 1990, 11, 108–112. DOI: 10.1016/0142-9612(90)90124-9.
  • Mainil‐Varlet, P.; Curtis, R.; Gogolewski, S. Effect of in Vivo and in Vitro Degradation on Molecular and Mechanical Properties of Various Low‐Molecular‐Weight Polylactides. J. Biomed. Mater. Res. 1997, 36, 360–380. DOI: 10.1002/(SICI)1097-4636(19970905)36:3<360::AID-JBM11>3.0.CO;2-I.
  • Bergsma, J. E.; de Bruijn, W. C.; Rozema, F. R.; Bos, R. R.; Boering, G. Late Degradation Tissue Response to Poly(?-Lactide) Bone Plates and Screws. Biomaterials. 1995, 16, 25–31. DOI: 10.1016/0142-9612(95)91092-D.
  • Andreopoulos, A. G.; Hatzi, E. C.; Doxastakis, M. Controlled Release Systems Based on Poly(Lactic Acid). An in Vitro and in Vivo Study. J. Mater. Sci. Mater. Med. 2000, 11, 393–397. DOI: 10.1023/A:1008990109419.
  • Zhang, X.; Mattheus ; Goosen, F. A.; Wyss, S. P.; Pichora, D., Biodegradable Polymers for Orthopedic Applications. J. Macromol. Sci., Part C. Polym. Rev. 1993, 33, 81–102. DOI: 10.1080/15321799308021434.
  • Jabbari, E.; He, X. Synthesis and Characterization of Bioresorbable in Situ Crosslinkable Ultra Low Molecular Weight Poly(Lactide) Macromer. J. Mater. Sci. Mater. Med. 2008, 19, 311–318. DOI: 10.1007/s10856-006-0020-2.
  • Migliaresi, C.; Cohn, D.; De Lollis, A.; Fambri, L. Dynamic Mechanical and Calorimetric Analysis of Compression-Molded PLLA of Different Molecular Weights: Effect of Thermal Treatments. J. Appl. Polym. Sci. 1991, 43, 83–95. DOI: 10.1002/app.1991.070430109.
  • Pietrzak, W. S.; Sarver, D. R.; Bianchini, S. D.; D'Alessio, K. Effect of Simulated Intraoperative Heating and Shaping on Mechanical Properties of a Bioabsorbable Fracture Plate Material. J. Biomed. Mater. Res. 1997, 38, 17–24. DOI: 10.1002/(SICI)1097-4636(199721)38:1<17::AID-JBM3>3.0.CO;2-K.
  • Kinoshita, Y.; Maeda, H. Recent Developments of Functional Scaffolds for Craniomaxillofacial Bone Tissue Engineering Applications. The. Scientific. World. J. 2013, 2013, 1–21. DOI: 10.1155/2013/863157.
  • DeJong, L. E. S.; DeBerardino, L. T. M.; Brooks, D. E.; Judson, K. In Vivo Comparison of a Metal versus a Biodegradable Suture Anchor. Arthroscopy. 2004, 20, 511–516. DOI: 10.1016/j.arthro.2004.03.008.
  • Wuisman, P. I. J. M.; Smit, T. H. Bioresorbable Polymers: heading for a New Generation of Spinal Cages. Eur. Spine. J. 2006, 15, 133–148. DOI: 10.1007/s00586-005-1003-6.
  • Hashemi, S. F.; Mehrabi, M.; Ehterami, A.; Gharravi, A. M.; Bitaraf, F. S.; Salehi, M. In-Vitro and In-Vivo Studies of PLA/PCL/Gelatin Composite Scaffold Containing Ascorbic Acid for Bone Regeneration. J. Drug. Deliv. Sci. Technol. 2021, 61, 102077. DOI: 10.1016/j.jddst.2020.102077.
  • Zheng, X.; Kan, B.; Gou, M.; Fu, SZhi.; Zhang, J.; Men, K.; Chen, L.; Luo, F.; Zhao, YLan.; Zhao, X.; et al. Preparation of MPEG-PLA Nanoparticle for Honokiol Delivery In Vitro. Int. J. Pharm. 2010, 386, 262–267. DOI: 10.1016/j.ijpharm.2009.11.014.
  • Mason, M. N.; Metters, A. T.; Bowman, C. N.; Anseth, K. S. Predicting Controlled-Release Behavior of Degradable PLA- b -PEG- b -PLA Hydrogels. Macromolecules. 2001, 34, 4630–4635. DOI: 10.1021/ma010025y.
  • Senthilkumar, M.; Mishra, P.; Jain, N. K. Long Circulating PEGylated Poly(D,L-lactide-co-glycolide) Nanoparticulate Delivery of Docetaxel to Solid Tumors. J. Drug. Target. 2008, 16, 424–435. DOI: 10.1080/10611860802088598.
  • Jie, P.; Venkatraman, S. S.; Min, F.; Freddy, B. Y. C.; Huat, G. L. Micelle-like Nanoparticles of Star-Branched PEO-PLA Copolymers as Chemotherapeutic Carrier. J. Control. Release. 2005, 110, 20–33. DOI: 10.1016/j.jconrel.2005.09.011.
  • Lo, C.-L.; Huang, C.-K.; Lin, K.-M.; Hsiue, G.-H. Mixed Micelles Formed from Graft and Diblock Copolymers for Application in Intracellular Drug Delivery. Biomaterials. 2007, 28, 1225–1235. DOI: 10.1016/j.biomaterials.2006.09.050.
  • Moravej, M.; Mantovani, D. Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities. Int. J. Mol. Sci. 2011, 12, 4250–4270. DOI: 10.3390/ijms12074250.
  • Reed, A. M.; Gilding, D. K. Biodegradable Polymers for Use in Surgery — Poly(Glycolic)/Poly(Iactic Acid) Homo and Copolymers: 2. In Vitro Degradation. Polymer. 1981, 22, 494–498. DOI: 10.1016/0032-3861(81)90168-3.
  • Lv, G.; He, F.; Wang, X.; Gao, F.; Zhang, G.; Wang, T.; Jiang, H.; Wu, C.; Guo, D.; Li, X.; et al. Novel Nanocomposite of Nano fe(3)o(4) and Polylactide Nanofibers for Application in Drug Uptake and Induction of Cell Death of Leukemia Cancer Cells. Langmuir. 2008, 24, 2151–2156. DOI: 10.1021/la702845s.
  • Younes, H.; Cohn, D. Phase Separation in Poly(Ethylene Glycol)/Poly(Lactic Acid) Blends. Eur. Polym. J. 1988, 24, 765–773. DOI: 10.1016/0014-3057(88)90013-4.
  • Hu, Y.; Hu, Y. S.; Topolkaraev, V.; Hiltner, A.; Baer, E. Aging of Poly(Lactide)/Poly(Ethylene Glycol) Blends. Part 2. Poly(Lactide) with High Stereoregularity. Polymer. 2003, 44, 5711–5720. DOI: 10.1016/S0032-3861(03)00615-3.
  • Hu, Y.; Hu, Y. S.; Topolkaraev, V.; Hiltner, A.; Baer, E. Crystallization and Phase Separation in Blends of High Stereoregular Poly(Lactide) with Poly(Ethylene Glycol). Polymer. 2003, 44, 5681–5689. DOI: 10.1016/S0032-3861(03)00609-8.
  • Baiardo, M.; Frisoni, G.; Scandola, M.; Rimelen, M.; Lips, D.; Ruffieux, K.; Wintermantel, E. Thermal and Mechanical Properties of Plasticized Poly(L-Lactic Acid). J. Appl. Polym. Sci. 2003, 90, 1731–1738. DOI: 10.1002/app.12549.
  • Liang, H.; Friedman, J. M.; Nacharaju, P. Fabrication of Biodegradable PEG-PLA Nanospheres for Solubility, Stabilization, and Delivery of Curcumin. Artif. Cells. Nanomed. Biotechnol. 2017, 45, 297–304. DOI: 10.3109/21691401.2016.1146736.
  • Feng, N. RGD-Modified Poly(D,L-Lactic Acid) Nanoparticles Enhance Tumor Targeting of Oridonin. IJN. 2012, 7, 211–219. DOI: 10.2147/IJN.S27581.
  • Rancan, F.; Papakostas, D.; Hadam, S.; Hackbarth, S.; Delair, T.; Primard, C.; Verrier, B.; Sterry, W.; Blume-Peytavi, U.; Vogt, A. Investigation of Polylactic Acid (PLA) Nanoparticles as Drug Delivery Systems for Local Dermatotherapy. Pharm. Res. 2009, 26, 2027–2036. DOI: 10.1007/s11095-009-9919-x.
  • Metters, A. Fundamental Studies of a Novel, Biodegradable PEG-b-PLA Hydrogel. Polymer. 2000, 41, 3993–4004. DOI: 10.1016/S0032-3861(99)00629-1.
  • Metters, A. T.; Bowman, C. N.; Anseth, K. S. A Statistical Kinetic Model for the Bulk Degradation of PLA- b -PEG- b -PLA Hydrogel Networks. J. Phys. Chem. B. 2000, 104, 7043–7049. DOI: 10.1021/jp000523t.
  • Lin, C.-C.; Metters, A. T. Hydrogels in Controlled Release Formulations: Network Design and Mathematical Modeling. Adv. Drug. Deliv. Rev. 2006, 58, 1379–1408. DOI: 10.1016/j.addr.2006.09.004.
  • Mathiowitz, E.; Jacob, J. S.; Jong, Y. S.; Carino, G. P.; Chickering, D. E.; Chaturvedi, P.; Santos, C. A.; Vijayaraghavan, K.; Montgomery, S.; Bassett, M.; Morrell, C. Biologically Erodable Microspheres as Potential Oral Drug Delivery Systems. Nature. 1997, 386, 410–414. DOI: 10.1038/386410a0.
  • Jain, D. S.; Athawale, R. B.; Bajaj, A. N.; Shrikhande, S. S.; Goel, P. N.; Nikam, Y.; Gude, R. P. Poly Lactic Acid (PLA) Nanoparticles Sustain the Cytotoxic Action of Temozolomide in C6 Glioma Cells. Biomed. Aging. Pathol. 2013, 3, 201–208. DOI: 10.1016/j.biomag.2013.08.003.
  • Solbrig, C. M.; Saucier-Sawyer, J. K.; Cody, V.; Saltzman, W. M.; Hanlon, D. J. Polymer Nanoparticles for Immunotherapy from Encapsulated Tumor-Associated Antigens and Whole Tumor Cells. Mol. Pharm. 2007, 4, 47–57. DOI: 10.1021/mp060107e.
  • Musumeci, T.; Pellitteri, R.; Spatuzza, M.; Puglisi, G. Nose-to-Brain Delivery: Evaluation of Polymeric Nanoparticles on Olfactory Ensheathing Cells Uptake. J. Pharm. Sci. 2014, 103, 628–635. DOI: 10.1002/jps.23836.
  • Gaucher, G.; Marchessault, R. H.; Leroux, J.-C. Polyester-Based Micelles and Nanoparticles for the Parenteral Delivery of Taxanes. J. Control. Release. 2010, 143, 2–12. DOI: 10.1016/j.jconrel.2009.11.012.
  • Haers, P. E.; Sailer, H. F. Biodegradable Self-Reinforced poly-L/DL-Lactide Plates and Screws in Bimaxillary Orthognathic Surgery: short Term Skeletal Stability and Material Related Failures. J. Craniomaxillofac. Surg. 1998, 26, 363–372. DOI: 10.1016/S1010-5182(98)80069-3.
  • Zhou, H.; Lawrence, J. G.; Bhaduri, S. B. Fabrication Aspects of PLA-CaP/PLGA-CaP Composites for Orthopedic Applications: A Review. Acta. Biomater. 2012, 8, 1999–2016. DOI: 10.1016/j.actbio.2012.01.031.
  • Turman, K. A.; Diduch, D. R.; Miller, M. D. All-Inside Meniscal Repair. Sports Health. 2009, 1, 438–444. DOI: 10.1177/1941738109334219.
  • Pierce, B. F.; Bellin, K.; Behl, M.; Lendlein, A. Demonstrating the Influence of Water on Shape-Memory Polymer Networks Based on Poly[(Rac-Lactide)-Co-Glycolide] Segments in Vitro. Int. J. Artif. Organs. 2011, 34, 172–179. DOI: 10.5301/IJAO.2011.6413.
  • Athanasiou, K.; Agrawal, C.; Barber, F.; Burkhart, S. Orthopaedic Applications for PLA-PGA Biodegradable Polymers. Arthroscopy. J.Arthroscop. Related Surg. 1998, 14, 726–737. DOI: 10.1016/S0749-8063(98)70099-4.
  • Zhu, W.-H.; Wang, Y.-B.; Wang, L.; Qiu, G.-F.; Lu, L.-Y. Effects of Canine Myoblasts Expressing Human cartilage-derived morphogenetic protein-2 on the repair of meniscal fibrocartilage injury. Mol. Med. Rep. 2014, 9, 1767–1772. DOI: 10.3892/mmr.2014.2047.
  • Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D Printing of Polymer Matrix Composites: A Review and Prospective. Composites Part B. Eng. 2017, 110, 442–458. DOI: 10.1016/j.compositesb.2016.11.034.
  • Norman, J.; Madurawe, R. D.; Moore, C. M. V.; Khan, M. A.; Khairuzzaman, A. A New Chapter in Pharmaceutical Manufacturing: 3D-Printed Drug Products. Adv. Drug. Deliv. Rev. 2017, 108, 39–50. DOI: 10.1016/j.addr.2016.03.001.
  • Chai, X.; Chai, H.; Wang, X.; Yang, J.; Li, J.; Zhao, Y.; Cai, W.; Tao, T.; Xiang, X. Fused Deposition Modeling (FDM) 3D Printed Tablets for Intragastric Floating Delivery of Domperidone. Sci. Rep. 2017, 7, 2829. DOI: 10.1038/s41598-017-03097-x.
  • Mohammed, A.; Elshaer, A.; Sareh, P.; Elsayed, M.; Hassanin, H. Additive Manufacturing Technologies for Drug Delivery Applications. Int. J. Pharm. 2020, 580, 119245. DOI: 10.1016/j.ijpharm.2020.119245.
  • Nakamura, M.; Iwanaga, S.; Henmi, C.; Arai, K.; Nishiyama, Y. Biomatrices and Biomaterials for Future Developments of Bioprinting and Biofabrication. Biofabrication. 2010, 2, 014110. DOI: 10.1088/1758-5082/2/1/014110.
  • Markstedt, K.; Mantas, A.; Tournier, I.; Martínez Ávila, H.; Hägg, D.; Gatenholm, P. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules. 2015, 16, 1489–1496. DOI: 10.1021/acs.biomac.5b00188.
  • Kang, H.-W.; Lee, S. J.; Ko, I. K.; Kengla, C.; Yoo, J. J.; Atala, A. A 3D Bioprinting System to Produce Human-Scale Tissue Constructs with Structural Integrity. Nat. Biotechnol. 2016, 34, 312–319. DOI: 10.1038/nbt.3413.
  • Lee, J.-S.; Hong, J. M.; Jung, J. W.; Shim, J.-H.; Oh, J.-H.; Cho, D.-W. 3D Printing of Composite Tissue with Complex Shape Applied to Ear Regeneration. Biofabrication. 2014, 6, 024103. DOI: 10.1088/1758-5082/6/2/024103.
  • Mannoor, M. S.; Jiang, Z.; James, T.; Kong, Y. L.; Malatesta, K. A.; Soboyejo, W. O.; Verma, N.; Gracias, D. H.; McAlpine, M. C. 3D Printed Bionic Ears. Nano Lett. 2013, 13, 2634–2639. DOI: 10.1021/nl4007744.
  • Zhao, L.; Lee, V. K.; Yoo, S.-S.; Dai, G.; Intes, X. The Integration of 3-D Cell Printing and Mesoscopic Fluorescence Molecular Tomography of Vascular Constructs within Thick Hydrogel Scaffolds. Biomaterials. 2012, 33, 5325–5332. DOI: 10.1016/j.biomaterials.2012.04.004.
  • Duan, B.; Hockaday, L. A.; Kang, K. H.; Butcher, J. T. 3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/Gelatin Hydrogels. J. Biomed. Mater. Res. A. 2013, 101, 1255–1264.
  • Vaidya, M. Startups Tout Commercially 3D-Printed Tissue for Drug Screening. Nat. Med. 2015, 21, 2–2. DOI: 10.1038/nm0115-2.
  • Yoon No, D.; Lee, K.-H.; Lee, J.; Lee, S.-H. 3D Liver Models on a Microplatform: well-Defined Culture, Engineering of Liver Tissue and Liver-on-a-Chip. Lab Chip. 2015, 15, 3822–3837. DOI: 10.1039/C5LC00611B.
  • Skardal, A.; Devarasetty, M.; Soker, S.; Hall, A. R. In Situ Patterned Micro 3D Liver Constructs for Parallel Toxicology Testing in a Fluidic Device. Biofabrication. 2015, 7, 031001. DOI: 10.1088/1758-5090/7/3/031001.
  • Lee, Y. H.; Lee, J. H.; An, I.-G.; Kim, C.; Lee, D. S.; Lee, Y. K.; Nam, J.-D. Electrospun Dual-Porosity Structure and Biodegradation Morphology of Montmorillonite Reinforced PLLA Nanocomposite Scaffolds. Biomaterials. 2005, 26, 3165–3172. DOI: 10.1016/j.biomaterials.2004.08.018.
  • Boetker, J.; Water, J. J.; Aho, J.; Arnfast, L.; Bohr, A.; Rantanen, J. Modifying Release Characteristics from 3D Printed Drug-Eluting Products. Eur. J. Pharm. Sci. 2016, 90, 47–52. DOI: 10.1016/j.ejps.2016.03.013.
  • Mills, D.; Weisman, J.; Nicholson, C.; Jammalamadaka, U.; Tappa, K.; Wilson, C. Antibiotic and Chemotherapeutic Enhanced Three-Dimensional Printer Filaments and Constructs for Biomedical Applications. IJN. 2015, 10, 357–370. DOI: 10.2147/IJN.S74811.
  • Sandler, N.; Salmela, I.; Fallarero, A.; Rosling, A.; Khajeheian, M.; Kolakovic, R.; Genina, N.; Nyman, J.; Vuorela, P. Towards Fabrication of 3D Printed Medical Devices to Prevent Biofilm Formation. Int. J. Pharm. 2014, 459, 62–64. DOI: 10.1016/j.ijpharm.2013.11.001.
  • Water, J. J.; Bohr, A.; Boetker, J.; Aho, J.; Sandler, N.; Nielsen, H. M.; Rantanen, J. Three-Dimensional Printing of Drug-Eluting Implants: Preparation of an Antimicrobial Polylactide Feedstock Material. J. Pharm. Sci. 2015, 104, 1099–1107. DOI: 10.1002/jps.24305.
  • Zhang, J.; Feng, X.; Patil, H.; Tiwari, R. V.; Repka, M. A. Coupling 3D Printing with Hot-Melt Extrusion to Produce Controlled-Release Tablets. Int. J. Pharm. 2017, 519, 186–197. DOI: 10.1016/j.ijpharm.2016.12.049.
  • Taboas, J. M.; Maddox, R. D.; Krebsbach, P. H.; Hollister, S. J. Indirect Solid Free Form Fabrication of Local and Global Porous, Biomimetic and Composite 3D Polymer-Ceramic Scaffolds. Biomaterials. 2003, 24, 181–194. DOI: 10.1016/S0142-9612(02)00276-4.
  • Yan, Y.; Xiong, Z.; Hu, Y.; Wang, S.; Zhang, R.; Zhang, C. Layered Manufacturing of Tissue Engineering Scaffolds via Multi-Nozzle Deposition. Mater. Lett. 2003, 57, 2623–2628. DOI: 10.1016/S0167-577X(02)01339-3.
  • Zhang, B.; Wang, L.; Song, P.; Pei, X.; Sun, H.; Wu, L.; Zhou, C.; Wang, K.; Fan, Y.; Zhang, X. 3D Printed Bone Tissue Regenerative PLA/HA Scaffolds with Comprehensive Performance Optimizations. Mater. Design. 2021, 201, 109490.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.