181
Views
3
CrossRef citations to date
0
Altmetric
Articles

Fabrication of a molecular imprinted composite and its application in the measurement of ceftriaxone in an electrochemical sensor

, , &
Pages 366-375 | Received 17 Jun 2021, Accepted 01 Dec 2021, Published online: 19 Dec 2021

References

  • Pacifici, M. G.; Marchini, G. Clinical Pharmacology of Ceftriaxone in Neonates and Infants: Effects and Pharmacokinetics. Int. J. Pediatr. 2017, 5, 5751–5777. DOI: 10.22038/IJP.2017.25371.2155.
  • Raveh, D.; Muallem-Zilcha, E.; Greenberg, A.; Wiener-Well, Y.; Schesinger, Y.; Yinnon, A. M. Prospective Drug Utilization Evaluation of Three Broad-Spectrum Antimicrobials: Cefepime, Piperacillin-Tazobactam and Meropenem. J. Assoc. Physicians 2006, 99, 397–406. DOI: 10.1093/qjmed/hcl050.
  • Geresu, G. D.; Yadesa, T. M.; Deresa, B. Drug Use Evaluation of Ceftriaxone in Medical Ward of Mizan Aman General Hospital, Bench Maji Zone, South Western Ethiopia. J. Bioanal. Biomed. 2018, 10, 127–131. DOI: 10.4172/1948-593X.1000221.
  • Young, T.; Mangum, B. Antimicrobials, 23rd ed.; NEOFAX: Montvale, NJ, 2010; 26–27.
  • Salman, A. T. RP-HPLC Estimation of Ceftriaxone Sodium in Pharmaceuticals. Egypt. J. Chem. 2021, 64, 4901–4906. DOI: 10.21608/EJCHEM.2021.68537.3504.
  • Akl, M. A.; Ahmed, M. A.; Ramadan, A. Validation of an HPLC-UV Method for the Determination of Ceftriaxone Sodium Residues on Stainless Steel Surface of Pharmaceutical Manufacturing Equipments. J. Pharm. Biomed. Anal. 2011, 55, 247–252. DOI: 10.1016/j.jpba.2011.01.020.
  • EL-Bagary, R. I.; Abo-Talib, N. F.; El-Hakeem, M. M.; N Eldin, M. B. Application of Green Chemistry for the Simultaneous Determination of Ceftriaxone Sodium in Its Binary Mixture with Sulbactam Sodium in Human Plasma and Dosage Forms. Anal. Chem. Lett. 2020, 10, 366–386. DOI: 10.1080/22297928.2020.1784787.
  • Eric-Jovanovic, S.; Agbaba, D.; Zivanov-Stakic, D.; Vladimirov, S. HPTLC Determination of Ceftriaxone, Cefixime and Cefotaxime in Dosage Forms. J. Pharm. Biomed. Anal. 1998, 18, 893–898. DOI: 10.1016/S0731-7085(98)00274-X.
  • Wongchang, T.; Winterberg, M.; Tarning, J.; Sriboonvorakul, N.; Muangnoicharoen, S.; Blessborn, D. Determination of Ceftriaxone in Human Plasma Using Liquid Chromatography–Tandem Mass Spectrometry. Wellcome Open Res. 2021, 4, 47. DOI: 10.12688/wellcomeopenres.15141.2.
  • Khasanov, V.; Sokolovich, E.; Dychko, K. Determination of Ceftriaxone in Blood and Tissues Using Ion-Exchange Chromatography. Pharm. Chem. J. 2006, 40, 109–111. DOI: 10.1007/s11094-006-0070-2.
  • Majdi, S.; Jabbari, A.; Heli, H.; Yadegari, H.; Moosavi-Movahedi, A.; Haghgoo, S. Electrochemical Oxidation and Determination of Ceftriaxone on a Glassy Carbon and Carbon-Nanotube-Modified Glassy Carbon Electrodes. J. Solid State Electrochem. 2009, 13, 407–416. DOI: 10.1007/s10008-008-0567-6.
  • Aleksić, M.; Lijeskić, N.; Pantić, J.; Kapetanović, V. Electrochemical Behavior and Differential Pulse Voltammetric Determination of Ceftazidime, Cefuroxime-Axetil and Ceftriaxone. FU Phys. Chem. Tech. 2013, 11, 55–66. DOI: 10.2298/FUPCT1301055A.
  • Altinoz, S.; Temizer, A.; Beksac, S. Determination of Ceftriaxone in Biological Material by Differential-Pulse Adsorptive Stripping Voltammetry. Analyst 1990, 115, 873–874. DOI: 10.1039/an9901500873.
  • Majidi, M. R.; Asadpour-Zeynali, K.; Hafezi, B. Electrocatalytic Oxidation and Determination of Antibiotic in Pharmaceutical Samples on a Nanostructure. Anal. Methods 2011, 3, 646–652. DOI: 10.1039/C0AY00582G.
  • ŠVancara, I.; VytřAs, K.; Kalcher, K.; Walcarius, A.; Wang, J. Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis. Electroanalysis 2009, 21, 7–28. DOI: 10.1002/elan.200804340.
  • Wang, J.; Zhang, K.; Xu, H.; Yan, B.; Gao, F.; Shi, Y.; Du, Y. Engineered Photoelectrochemical Platform for the Ultrasensitive Detection of Caffeic Acid Based on Flower-Like MoS2 and PANI Nanotubes Nanohybrid. Sens. Actuators B 2018, 276, 322–330. DOI: 10.1016/j.snb.2018.08.128.
  • Hassan Oghli, A.; Alipour, E.; Asadzadeh, M. Development of a Novel Voltammetric Sensor for the Determination of Methamphetamine in Biological Samples on the Pretreated Pencil Graphite Electrode. RSC Adv. 2015, 5, 9674–9682. DOI: 10.1039/C4RA11399C.
  • Vasapollo, G.; Sole, R. D.; Mergola, L.; Lazzoi, M. R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly Imprinted Polymers: Present and Future Prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. DOI: 10.3390/ijms12095908.
  • Ramström, O.; Mosbach, K. Synthesis and Catalysis by Molecularly Imprinted Materials. Curr. Opin. Chem. Biol. 1999, 3, 759–764. DOI: 10.1016/S1367-5931(99)00037-X.
  • Bunina, Z. Y.; Bryleva, K.; Yurchenko, O.; Belikov, K. Sorption Materials Based on Ethylene Glycol Dimethacrylate and Methacrylic Acid Copolymers for Rare Earth Elements Extraction from Aqueous Solutions. Adsorpt. Sci. Technol. 2017, 35, 545–559. DOI: 10.1177/0263617417701455.
  • Liu, R.; Poma, A. Advances in Molecularly Imprinted Polymers as Drug Delivery Systems. Molecules 2021, 26, 3589. DOI: 10.3390/molecules26123589.
  • Liu, B.; Cang, H.; Jin, J. Molecularly Imprinted Polymers Based Electrochemical Sensor for 2,4-Dichlorophenol Determination. Polymers 2016, 8, 309. DOI: 10.3390/polym8080309.
  • Uzun, L.; Turner, A. P. Molecularly-Imprinted Polymer Sensors: Realising Their Potential. Biosens. Bioelectron. 2016, 76, 131–144. DOI: 10.1016/j.bios.2015.07.013.
  • Adumitrăchioaie, A.; Tertiș, M.; Cernat, A.; Săndulescu, R.; Cristea, C. Electrochemical Methods Based on Molecularly Imprinted Polymers for Drug Detection. A Review. Int. J. Electrochem. Sci. 2018, 13, 2556–2576. DOI: 10.20964/2018.03.75.
  • Gerard, M.; Chaubey, A.; Malhotra, B. Application of Conducting Polymers to Biosensors. Biosens. Bioelectron. 2002, 17, 345–359. DOI: 10.1016/s0956-5663(01)00312-8.
  • Waltman, R. J.; Bargon, J. Electrically Conducting Polymers: A Review of the Electropolymerization Reaction, of the Effects of Chemical Structure on Polymer Film Properties, and of Applications towards Technology. Can. J. Chem. 1986, 64, 76–95. DOI: 10.1139/v86-015.
  • Balint, R.; Cassidy, N. J.; Cartmell, S. H. Conductive Polymers: Towards a Smart Biomaterial for Tissue Engineering. Acta Biomater. 2014, 10, 2341–2353. DOI: 10.1016/j.actbio.2014.02.015.
  • Boeva, Z. A.; Sergeyev, V. G. Polyaniline: Synthesis, Properties, and Application. Polym. Sci. Ser. C 2014, 56, 144–153. DOI: 10.1134/S1811238214010032.
  • Camalet, J.; Lacroix, J.; Aeiyach, S.; Chane-Ching, K.; Lacaze, P. Electrosynthesis of Adherent Polyaniline Films on Iron and Mild Steel in Aqueous Oxalic Acid Medium. Synth. Met. 1998, 93, 133–142. DOI: 10.1016/S0379-6779(97)04099-X.
  • Salaneck, W.; Lundström, I.; Huang, W.-S.; MacDiarmid, A. A Two-dimensional-Surface ‘State Diagram’ for Polyaniline. Synth. Met. 1986, 13, 291–297. DOI: 10.1016/0379-6779(86)90190-6.
  • Paul, E. W.; Ricco, A. J.; Wrighton, M. S. Resistance of Polyaniline Films as a Function of Electrochemical Potential and the Fabrication of Polyaniline-Based Microelectronic Devices. J. Phys. Chem. 1985, 89, 1441–1447. DOI: 10.1021/j100254a028.
  • Zuo, X.; He, S.; Li, D.; Peng, C.; Huang, Q.; Song, S.; Fan, C. Graphene Oxide-Facilitated Electron Transfer of Metalloproteins at Electrode Surfaces. Langmuir 2010, 26, 1936–1939. DOI: 10.1021/la902496u.
  • Wang, Z.; Zhou, X.; Zhang, J.; Boey, F.; Zhang, H. Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase. J. Phys. Chem. C 2009, 113, 14071–14075. DOI: 10.1021/jp906348x.
  • Hassan Oghli, A.; Soleymanpour, A. Polyoxometalate/Reduced Graphene Oxide Modified Pencil Graphite Sensor for the Electrochemical Trace Determination of Paroxetine in Biological and Pharmaceutical Media. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110407. DOI: 10.1016/j.msec.2019.110407.
  • Wang, D.-W.; Li, F.; Wu, Z.-S.; Ren, W.; Cheng, H.-M. Electro Chemical Interfacial Capacitance in Multilayer Graphene Sheets: Dependence on Number of Stacking Layers. Electrochem. Commun. 2009, 11, 1729–1732. DOI: 10.1016/j.elecom.2009.06.034.
  • Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y. Facile and Controllable Electrochemical Reduction of Graphene Oxide and Its Applications. J. Mater. Chem. 2010, 20, 743–748. [Database] DOI: 10.1039/B917975E.
  • Shao, Y.; Zhang, S.; Engelhard, M. H.; Li, G.; Shao, G.; Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. Nitrogen-Doped Graphene and Its Electrochemical Applications. J. Mater. Chem. 2010, 20, 7491–7496. DOI: 10.1039/c0jm00782j.
  • Wang, J. Analytical Electrochemistry; Hoboken, NJ, Wiley-VCH, 2006.
  • Sellergren, B.; Lepistoe, M.; Mosbach, K. Highly Enantioselective and Substrate-Selective Polymers Obtained by Molecular Imprinting Utilizing Noncovalent Interactions. NMR and Chromatographic Studies on the Nature of Recognition. J. Am. Chem. Soc. 1988, 110, 5853–5860. DOI: 10.1021/ja00225a041.
  • W.S. Hummers, W. S. Jr.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. [Database] DOI: 10.1021/ja01539a017.
  • Coelho, M. K. L.; Giarola, J. D. F.; Da Silva, A. T. M.; Tarley, C. R. T.; Borges, K. B.; Pereira, A. C. Development and Application of Electrochemical Sensor Based on Molecularly Imprinted Polymer and Carbon Nanotubes for the Determination of Carvedilol. Chemosensors 2016, 4, 22. DOI: 10.3390/chemosensors4040022.
  • Amouzad, F.; Zarei, K. Layer-by-Layer Electrochemical Assembly of Pt/Phosphomolybdic Acid/Poly (Diphenylamine)/PGE for Electrocatalytic Oxidation of Methanol. J. Electr. Mater. 2020, 49, 3583–3590. DOI: 10.1007/s11664-020-08054-5.
  • Owens, H. M.; Dash, A. K. Ceftriaxone Sodium: Comprehensive Profile. Prof. Drug Subst. Excip. Relat. Methodol. 2003, 30, 21–57. DOI: 10.1016/S0099-5428(03)30002-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.