222
Views
2
CrossRef citations to date
0
Altmetric
Articles

The immune system and its response to polymeric materials used for craniofacial regeneration

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 407-424 | Received 19 Aug 2021, Accepted 14 Dec 2021, Published online: 06 Jan 2022

References

  • Vacanti, C. A. The History of Tissue Engineering. J. Cell. Mol. Med. 2006, 10, 569–576. DOI: 10.1111/j.1582-4934.2006.tb00421.x.
  • Im, G. I. Biomaterials in Orthopaedics: The past and Future with Immune Modulation. Biomater. Res. 2020, 24, 1–4.
  • Winkler, T.; Sass, F. A.; Duda, G. N.; Schmidt-Bleek, K. A Review of Biomaterials in Bone Defect Healing, Remaining Shortcomings and Future Opportunities for Bone Tissue Engineering: The Unsolved Challenge. Bone Joint Res. 2018, 7, 232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1.
  • Velasco, M. A.; Narváez-Tovar, C. A.; Garzón-Alvarado, D. A. Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering. Biomed. Res. Int. 2015, 2015, 729076.
  • Parisi, L.; Toffoli, A.; Ghiacci, G.; Macaluso, G. M. Tailoring the Interface of Biomaterials to Design Effective Scaffolds. JFB. 2018, 9, 50. DOI: 10.3390/jfb9030050.
  • Lee, J.; Byun, H.; Madhurakkat Perikamana, S. K.; Lee, S.; Shin, H. Current Advances in Immunomodulatory Biomaterials for Bone Regeneration. Adv. Healthc. Mater. 2019, 8, e1801106.
  • Negrescu, A. M.; Cimpean, A. The State of the Art and Prospects for Osteoimmunomodulatory Biomaterials. Materials. 2021, 14, 1357. DOI: 10.3390/ma14061357.
  • Stoppel, W. L.; Ghezzi, C. E.; McNamara, S. L.; Black, L. D.; 3rd; Kaplan, D. L. Clinical Applications of Naturally Derived Biopolymer-Based Scaffolds for Regenerative Medicine [Published Correction Appears in Ann Biomed Eng. 2015 Aug;43(8):2023]. Ann. Biomed. Eng. 2015, 43, 657–680. DOI: 10.1007/s10439-014-1206-2.
  • Sawkins, M. J.; Bowen, W.; Dhadda, P.; Markides, H.; Sidney, L. E.; Taylor, A. J.; Rose, F. R.; Badylak, S. F.; Shakesheff, K. M.; White, L. J. Hydrogels Derived from Demineralized and Decellularized Bone Extracellular Matrix. Acta Biomater. 2013, 9, 7865–7873. DOI: 10.1016/j.actbio.2013.04.029.
  • Holt, D. J.; Grainger, D. W. Demineralized Bone Matrix as a Vehicle for Delivering Endogenous and Exogenous Therapeutics in Bone Repair. Adv. Drug Deliv. Rev. 2012, 64, 1123–1128. DOI: 10.1016/j.addr.2012.04.002.
  • Latimer, J. M.; Maekawa, S.; Yao, Y.; Wu, D. T.; Chen, M.; Giannobile, W. V. Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects. Front. Bioeng. Biotechnol. 2021, 9, 704048. DOI: 10.3389/fbioe.2021.704048.
  • Dar, H. Y.; Azam, Z.; Anupam, R.; Mondal, R. K.; Srivastava, R. K. Osteoimmunology: The Nexus between Bone and Immune System. Front Biosci. 2018, 23, 464–492.
  • Kelly, S. H.; Shores, L. S.; Votaw, N. L.; Collier, J. H. Biomaterial Strategies for Generating Therapeutic Immune Responses. Adv. Drug Deliv. Rev. 2017, 114, 3–18. DOI: 10.1016/j.addr.2017.04.009.
  • Mariani, E.; Lisignoli, G.; Borzì, R. M.; Pulsatelli, L. Biomaterials: Foreign Bodies or Tuners for the Immune Response? IJMS. 2019, 20, 636. DOI: 10.3390/ijms20030636.
  • Chung, L.; Maestas, D. R.; Jr.; Housseau, F.; Elisseeff, J. H. Key Players in the Immune Response to Biomaterial Scaffolds for Regenerative Medicine. Adv, Drug Deliv, Rev. 2017, 114, 184–192. DOI: 10.1016/j.addr.2017.07.006.
  • Guarino, V.; Gloria, A.; Raucci, M. G.; Ambrosio, L. Hydrogel-Based Platforms for the Regeneration of Osteochondral Tissue and Intervertebral Disc. Polymers. 2012, 4, 1590–1612. DOI: 10.3390/polym4031590.
  • Mata, A.; Geng, Y.; Henrikson, K. J.; Aparicio, C.; Stock, S. R.; Satcher, R. L.; Stupp, S. I. Bone Regeneration Mediated by Biomimetic Mineralization of a Nanofiber Matrix. Biomaterials. 2010, 31, 6004–6012. DOI: 10.1016/j.biomaterials.2010.04.013.
  • Chen, G. Q.; Wu, Q. The Application of Polyhydroxyalkanoates as Tissue Engineering Materials. Biomaterials. 2005, 26, 6565–6578. DOI: 10.1016/j.biomaterials.2005.04.036.
  • Emara, A.; Shah, R. Recent Update on Craniofacial Tissue Engineering. J. Tissue Eng. 2021, 12, 20417314211003735.
  • Silva, A. L.; Peres, C.; Conniot, J.; Matos, A. I.; Moura, L.; Carreira, B.; Sainz, V.; Scomparin, A.; Satchi-Fainaro, R.; Préat, V.; et al. Nanoparticle Impact on Innate Immune Cell Pattern-Recognition Receptors and Inflammasomes Activation. Semin. Immunol. 2017, 34, 3–24. DOI: 10.1016/j.smim.2017.09.003.
  • Jiao, Q.; Li, L.; Mu, Q.; Zhang, Q. Immunomodulation of Nanoparticles in Nanomedicine Applications. Biomed Res. Int. 2014, 2014, 426028.
  • Seciu, A. M.; Craciunescu, O.; Stanciuc, A. M.; Zarnescu, O. Tailored Biomaterials for Therapeutic Strategies Applied in Periodontal Tissue Engineering. Stem Cells Dev. 2019, 28, 963–973. DOI: 10.1089/scd.2019.0016.
  • Park, J.; Gerber, M. H.; Babensee, J. E. Phenotype and Polarization of Autologous T Cells by Biomaterial-Treated Dendritic Cells. J. Biomed. Mater. Res. A. 2015, 103, 170–184. DOI: 10.1002/jbm.a.35150.
  • Getts, D. R.; Shea, L. D.; Miller, S. D.; King, N. J. Harnessing Nanoparticles for Immune Modulation. Trends Immunol. 2015, 36, 419–427. DOI: 10.1016/j.it.2015.05.007.
  • Dobrovolskaia, M. A.; Shurin, M.; Shvedova, A. A. Current Understanding of Interactions between Nanoparticles and the Immune System. Toxicol. Appl. Pharmacol. 2016, 299, 78–89. DOI: 10.1016/j.taap.2015.12.022.
  • Andorko, J. I.; Jewell, C. M. Designing Biomaterials with Immunomodulatory Properties for Tissue Engineering and Regenerative Medicine. Bioeng. Transl. Med. 2017, 2, 139–155. DOI: 10.1002/btm2.10063.
  • Liu, Y.; Hardie, J.; Zhang, X.; Rotello, V. M. Effects of Engineered Nanoparticles on the Innate Immune System. Semin. Immunol. 2017, 34, 25–32. DOI: 10.1016/j.smim.2017.09.011.
  • Abaricia, J. O.; Farzad, N.; Heath, T. J.; Simmons, J.; Morandini, L.; Olivares-Navarrete, R. Control of Innate Immune Response by Biomaterial Surface Topography, Energy, and Stiffness. Acta Biomater. 2021, 133, 58–73. DOI: 10.1016/j.actbio.2021.04.021.
  • Mandal, S.; Hammink, R.; Tel, J.; Eksteen-Akeroyd, Z. H.; Rowan, A. E.; Blank, K.; Figdor, C. G. Polymer-Based Synthetic Dendritic Cells for Tailoring Robust and Multifunctional T Cell Responses. ACS Chem. Biol. 2015, 10, 485–492. DOI: 10.1021/cb500455g.
  • Vasilijić, S.; Savić, D.; Vasilev, S.; Vučević, D.; Gašić, S.; Majstorović, I.; Janković, S.; Čolić, M. Dendritic Cells Acquire Tolerogenic Properties at the Site of Sterile Granulomatous Inflammation. Cell Immunol. 2005, 233, 148–157. DOI: 10.1016/j.cellimm.2005.04.007.
  • Adamopoulos, I. E. Inflammation in Bone Physiology and Pathology. Curr. Opin. Rheumatol. 2018, 30, 59–64. DOI: 10.1097/BOR.0000000000000449.
  • Fergal, J. O. Biomaterials & Scaffolds for Tissue Engineering. Mater. Today. 2011, 14, 88–95.
  • Soni, S. S.; Rodell, C. B. Polymeric Materials for Immune Engineering: Molecular Interaction to Biomaterial Design. Acta Biomater. 2021, 133, 139–152. DOI: 10.1016/j.actbio.2021.01.016.
  • Sridharan, R.; Cameron, A. R.; Kelly, D. J.; Kearney, C. J.; O’Brien, F. J. Biomaterial Based Modulation of Macrophage Polarization: A Review and Suggested Design Principles. Mater. Today. 2015, 18, 313–325. DOI: 10.1016/j.mattod.2015.01.019.
  • Junge, K.; Binnebösel, M.; von Trotha, K. T.; Rosch, R.; Klinge, U.; Neumann, U. P.; Lynen Jansen, P. Mesh Biocompatibility: Effects of Cellular Inflammation and Tissue Remodelling. Langenbecks. Arch. Surg. 2012, 397, 255–270. DOI: 10.1007/s00423-011-0780-0.
  • Zawrotniak, M.; Rapala-Kozik, M. Neutrophil Extracellular Traps (NETs) – Formation and Implications. Acta Biochim. Pol. 2013, 60, 277–284.
  • Miron, R. J.; Bosshardt, D. D. OsteoMacs: Key Players around Bone Biomaterials. Biomaterials/. 2016, 82, 1–19. DOI: 10.1016/j.biomaterials.2015.12.017.
  • Sinder, B. P.; Pettit, A. R.; McCauley, L. K. Macrophages: Their Emerging Roles in Bone. J. Bone Miner. Res. 2015, 30, 2140–2149. DOI: 10.1002/jbmr.2735.
  • Ding, J.; Venkatesan, R.; Zhai, Z.; Muhammad, W.; Nakkala, J. R.; Gao, C. Micro- and Nanoparticles-Based Immunoregulation of Macrophages for Tissue Repair and Regeneration. Coll. Surf B Biointerf. 2020, 192, 111075. DOI: 10.1016/j.colsurfb.2020.111075.
  • Ozpinar, E. W.; Frey, A. L.; Cruse, G.; Freytes, D. O. Mast Cell-Biomaterial Interactions and Tissue Repair. Tissue Eng. Part B Rev. 2021, 27, 590–603. doi: 10.1089/ten.TEB.2020.0275.
  • Agier, J.; Pastwińska, J.; Brzezińska-Błaszczyk, E. An Overview of Mast Cell Pattern Recognition Receptors. Inflamm. Res. 2018, 67, 737–746. DOI: 10.1007/s00011-018-1164-5.
  • Thevenot, P. T.; Baker, D. W.; Weng, H.; Sun, M. W.; Tang, L. The Pivotal Role of Fibrocytes and Mast Cells in Mediating Fibrotic Reactions to biomaterials. Biomaterials. 2011, 32, 8394–8403. DOI: 10.1016/j.biomaterials.2011.07.084.
  • Kirshenbaum, A. S.; Swindle, E.; Kulka, M.; Wu, Y.; Metcalfe, D. D. Effect of Lipopolysaccharide (LPS) and Peptidoglycan (PGN) on Human Mast Cell Numbers, Cytokine Production, and Protease Composition. BMC Immunol. 2008, 7, 45.
  • Vivier, E.; Raulet, D. H.; Moretta, A.; Caligiuri, M. A.; Zitvogel, L.; Lanier, L. L.; Yokoyama, W. M.; Ugolini, S. Innate or Adaptive Immunity? The Example of Natural Killer Cells. Science. 2011, 7, 44–49.
  • Xu, Y.; Pang, S. W. Natural Killer Cell Migration Control in Microchannels by Perturbations and Topography. Lab. Chip. 2019, 21, 2466–2475.
  • Rostam, H. M.; Fisher, L. E.; Hook, A. L.; Burroughs, L.; Luckett, J. C.; Figueredo, G. P.; Mbadugha, C.; Teo, A. C. K.; Latif, A.; Kämmerling, L.; et a. Immune-Instructive Polymers Control Macrophage Phenotype and Modulate the Foreign Body Response in Vivo. Matter. 2020, 2, 1564–1581. DOI: 10.1016/j.matt.2020.03.018.
  • Chen, Z.; Klein, T.; Murray, R. Z.; Crawford, R.; Chang, J.; Wu, C.; Xiao, Y. Osteoimmunomodulation for the Development of Advanced Bone Biomaterials. Mater. Today. 2016, 19, 304–321. DOI: 10.1016/j.mattod.2015.11.004.
  • Pan, H.; Xie, Y.; Zhang, Z.; Li, K.; Hu, D.; Zheng, X.; Tang, T. Immunomodulation Effect of a Hierarchical Macropore/Nanosurface on Osteogenesis and Angiogenesis. Biomed. Mater. 2017, 12, 045006. DOI: 10.1088/1748-605X/aa6b7c.
  • Karageorgiou, V.; Kaplan, D. Porosity of 3D Biomaterial Scaffolds and Osteogenesis. Biomaterials. 2005, 26, 5474–5491. DOI: 10.1016/j.biomaterials.2005.02.002.
  • Tang, M.; Tian, L.; Luo, G.; Yu, X. Interferon-Gamma-Mediated Osteoimmunology. Front. Immunol. 2018, 9, 1508. DOI: 10.3389/fimmu.2018.01508.
  • Teixeira, M. A.; Amorim, M. T. P.; Felgueiras, H. P. Poly(Vinyl Alcohol)-Based Nanofibrous Electrospun Scaffolds for Tissue Engineering Applications. Polymers. 2019, 12, 7. DOI: 10.3390/polym12010007.
  • Jiang, J.; Li, Z.; Wang, H.; Wang, Y.; Carlson, M. A.; Teusink, M. J.; MacEwan, M. R.; Gu, L.; Xie, J. Expanded 3D Nanofiber Scaffolds: Cell Penetration, Neovascularization, and Host Response. Adv. Healthc. Mater. 2016, 5, 2993–3003. DOI: 10.1002/adhm.201600808.
  • Han, X.; Zhou, X.; Qiu, K.; Feng, W.; Mo, H.; Wang, M.; Wang, J.; He, C. Strontium-Incorporated Mineralized PLLA Nanofibrous Membranes for Promoting Bone Defect Repair. Coll. Surf. B Biointerf. 2019, 179, 363–373. DOI: 10.1016/j.colsurfb.2019.04.011.
  • González Macias, J.; Olmos Martínez, J. Fisiopatología de la Osteoporosis y Mecanismo de Acción de la PTH. Rev Osteoporos Metab Miner. 2010, 2 (Supl 2), S5–S17.
  • Siddiqui, J. A.; Partridge, N. C. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology 2016, 31, 233–245. DOI: 10.1152/physiol.00061.2014.
  • Zięba, M.; Chaber, P.; Duale, K.; Martinka Maksymiak, M.; Basczok, M.; Kowalczuk, M.; Adamus, G. Polymeric Carriers for Delivery Systems in the Treatment of Chronic Periodontal Disease. Polymers. 2020, 12, 1574. DOI: 10.3390/polym12071574.
  • Parithimarkalaignan, S.; Padmanabhan, T. V. Osseointegration: An Update. J. Indian Prosthodont. Soc. 2013, 13, 2–6. DOI: 10.1007/s13191-013-0252-z.
  • Li, G.; Zhou, T.; Lin, S.; Shi, S.; Lin, Y. Nanomaterials for Craniofacial and Dental Tissue Engineering. J. Dent. Res. 2017, 96, 725–732. DOI: 10.1177/0022034517706678.
  • Serrano Bello, J.; Cruz-Maya, I.; González-Alva, P.; Alvarez-Perez, M. A.; Guarino, V. 7 -Electro- and Nonelectro-Assisted Spinning Technologies for in Vitro and in Vivo Models. In Nanomaterials for Theranostics and Tissue Engineering, 1st ed.; Rossi, F. and Rainer, A., Eds.; Elsevier: Cambrige, MA, 2020; pp 175–204.
  • Galler, K. M.; D'Souza, R. N.; Hartgerink, J. D.; Schmalz, G. Scaffolds for Dental Pulp Tissue Engineering. Adv. Dent. Res. 2011, 23, 333–339. DOI: 10.1177/0022034511405326.
  • Tylek, T.; Blum, C.; Hrynevich, A.; Schlegelmilch, K.; Schilling, T.; Dalton, P. D.; Groll, J. Precisely Defined Fiber Scaffolds with 40 μm Porosity Induce Elongation Driven M2-like Polarization of Human Macrophages. Biofabrication. 2020, 12, 025007. DOI: 10.1088/1758-5090/ab5f4e.
  • Almeida, C. R.; Serra, T.; Oliveira, M. I.; Planell, J. A.; Barbosa, M. A.; Navarro, M. Impact of 3-D Printed PLA- and Chitosan-Based Scaffolds on Human Monocyte/Macrophage Responses: unraveling the Effect of 3-D Structures on Inflammation. Acta Biomater. 2014, 10, 613–622. DOI: 10.1016/j.actbio.2013.10.035.
  • Julier, Z.; Park, A. J.; Briquez, P. S.; Martino, M. M. Promoting Tissue Regeneration by Modulating the Immune System. Acta Biomater. 2017, 53, 13–28. DOI: 10.1016/j.actbio.2017.01.056.
  • Mendieta-Barrañon, I.; Chanes-Cuevas, O. A.; Álvarez-Pérez, M. A.; González-Alva, P.; Medina, L. A.; Aguilar-Franco, M.; Serrano-Bello, J. Physicochemical and Tissue Response of PLA Nanofiber Scaffolds Sterilized by Different Techniques. Odovtos Int. J. Dent. Sci. 2019, 21, 77–88.
  • Moezizadeh, M. Future of Dentistry, Nanodentistry, Ozone Therapy and Tissue Engineering. J Develop. Biol. Tissue Eng. 2013, 5, 1–6.
  • Bai, L.; Liu, Y.; Du, Z.; Weng, Z.; Yao, W.; Zhang, X.; Huang, X.; Yao, X.; Crawford, R.; Hang, R.; et al. Differential Effect of Hydroxyapatite Nano-Particle versus Nano-Rod Decorated Titanium Micro-Surface on Osseointegration. Acta Biomater. 2018, 76, 344–358. DOI: 10.1016/j.actbio.2018.06.023.
  • Chang, D. T.; Colton, E.; Matsuda, T.; Anderson, J. M. Lymphocyte Adhesion and Interactions with Biomaterial Adherent Macrophages and Foreign Body Giant Cells. J. Biomed. Mater. Res. A. 2009, 91, 1210–1220.
  • Franz, S.; Rammelt, S.; Scharnweber, D.; Simon, J. C. Immune Responses to Implants – A Review of the Implications for the Design of Immunomodulatory Biomaterials. Biomaterials. 2011, 32, 6692–6709. DOI: 10.1016/j.biomaterials.2011.05.078.
  • Shih, Y. R.; Chen, C. N.; Tsai, S. W.; Wang, Y. J.; Lee, O. K. Growth of Mesenchymal Stem Cells on Electrospun Type I Collagen Nanofibers. Stem Cells. 2006, 24, 2391–2397. DOI: 10.1634/stemcells.2006-0253.
  • Vazquez-Vazquez, F. C.; Chanes-Cuevas, O. A.; Masuoka, D.; Alatorre, J. A.; Chavarria-Bolaños, D.; Vega-Baudrit, J. R.; Serrano-Bello, J.; Alvarez-Perez, M. A. Biocompatibility of Developing 3D-Printed Tubular Scaffold Coated with Nanofibers for Bone Applications. J. Nanomater. 2019, 2019, 1–13. DOI: 10.1155/2019/6105818.
  • Mota, J.; Yu, N.; Caridade, S. G.; Luz, G. M.; Gomes, M. E.; Reis, R. L.; Janse, J. A.; Walboomers, X. F.; Mano, J. F. Chitosan/Bioactive Glass Nanoparticle Composite Membranes for Periodontal Regeneration. Acta Biomater. 2012, 8, 4173–4180. DOI: 10.1016/j.actbio.2012.06.040.
  • Yu, X.; Tang, X.; Gohil, S. V.; Laurencin, C. T. Biomaterials for Bone Regenerative Engineering. Adv. Healthc. Mater. 2015, 4, 1268–1285. DOI: 10.1002/adhm.201400760.
  • Boehler, R.; Graham, J.; Shea, L. Tissue Engineering Tools for Modulation of the Immune Response. Biotechniques. 2011, 51, 239–240, 242, 244 passim. DOI: 10.2144/000113754.
  • Sadowska, J. M.; Wei, F.; Guo, J.; Guillem-Marti, J.; Ginebra, M. P.; Xiao, Y. Effect of Nano-Structural Properties of Biomimetic Hydroxyapatite on Osteoimmunomodulation. Biomaterials. 2018, 181, 318–332. DOI: 10.1016/j.biomaterials.2018.07.058.
  • Ion, R.; Vizireanu, S.; Stancu, C. E.; Luculescu, C.; Cimpean, A.; Dinescu, G. Surface Plasma Functionalization Influences Macrophage Behavior on Carbon Nanowalls. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 48, 118–125. DOI: 10.1016/j.msec.2014.11.064.
  • Cao, H.; McHugh, K.; Chew, S. Y.; Anderson, J. M. The Topographical Effect of Electrospun Nanofibrous Scaffolds on the in Vivo and in Vitro Foreign Body Reaction. J Biomed Mater Res A 2010, 93, 1151–1159.
  • Marew, T.; Birhanu, G. Three Dimensional Printed Nanostructure Biomaterials for Bone Tissue Engineering. Regen. Ther. 2021, 18, 102–111. DOI: 10.1016/j.reth.2021.05.001.
  • Sicchieri, L. G.; Crippa, G. E.; de Oliveira, P. T.; Beloti, M. M.; Rosa, A. L. Pore Size Regulates Cell and Tissue Interactions with PLGA-CaP Scaffolds Used for Bone Engineering. J. Tissue Eng. Regen. Med. 2012, 6, 155–162. DOI: 10.1002/term.422.
  • Echeverria Molina, M. I.; Malollari, K. G.; Komvopoulos, K. Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front. Bioeng. Biotechnol. 2021, 9, 617141. DOI: 10.3389/fbioe.2021.617141.
  • Gratton, S. E.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M. The Effect of Particle Design on Cellular Internalization Pathways. Proc. Natl. Acad. Sci. USA. 2008, 105, 11613–11618. DOI: 10.1073/pnas.0801763105.
  • Veiseh, O.; Doloff, J. C.; Ma, M.; Vegas, A. J.; Tam, H. H.; Bader, A. R.; Li, J.; Langan, E.; Wyckoff, J.; Loo, W. S.; et al. Size- and Shape-Dependent Foreign Body Immune Response to Materials Implanted in Rodents and Non-Human Primates. Nat. Mater. 2015, 14, 643–651. DOI: 10.1038/nmat4290.
  • Chen, Z.; Bachhuka, A.; Han, S.; Wei, F.; Lu, S.; Visalakshan, R. M.; Vasilev, K.; Xiao, Y. Tuning Chemistry and Topography of Nanoengineered Surfaces to Manipulate Immune Response for Bone Regeneration Applications. ACS Nano. 2017, 11, 4494–4506. DOI: 10.1021/acsnano.6b07808.
  • Florencio-Silva, R.; Sasso, G. R.; Sasso-Cerri, E.; Simões, M. J.; Cerri, P. S. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. Biomed Res. Int. 2015, 2015, 421746.
  • Jones, J. A.; Chang, D. T.; Meyerson, H.; Colton, E.; Kwon, I. K.; Matsuda, T.; Anderson, J. M. Proteomic Analysis and Quantification of Cytokines and Chemokines from Biomaterial Surface-Adherent Macrophages and Foreign Body Giant Cells. J. Biomed. Mater. Res. A. 2007, 83, 585–596.
  • Bartneck, M.; Keul, H. A.; Singh, S.; Czaja, K.; Bornemann, J.; Bockstaller, M.; Moeller, M.; Zwadlo-Klarwasser, G.; Groll, J. Rapid Uptake of Gold Nanorods by Primary Human Blood Phagocytes and Immunomodulatory Effects of Surface Chemistry. ACS Nano. 2010, 4, 3073–3086. DOI: 10.1021/nn100262h.
  • Amini, A. R.; Adams, D. J.; Laurencin, C. T.; Nukavarapu, S. P. Optimally Porous and Biomechanically Compatible Scaffolds for Large-Area Bone Regeneration. Tissue Eng Part A 2012, 18, 1376–1388. DOI: 10.1089/ten.tea.2011.0076.
  • Kuboki, Y.; Jin, Q.; Kikuchi, M.; Mamood, J.; Takita, H. Geometry of Artificial EMC: Sizes of Pores Controlling Phenotype Expression in BMP-Induced Osteogenesis and Chondrogenesis. Connect. Tissue Res. 2002, 43, 529–534. DOI: 10.1080/03008200290001104.
  • Najafi-Hajivar, S.; Zakeri-Milani, P.; Mohammadi, H.; Niazi, M.; Soleymani-Goloujeh, M.; Baradaran, B.; Valizadeh, H. Overview on Experimental Models of Interactions between Nanoparticles and the Immune System. Biomed. Pharmacother. 2016, 83, 1365–1378. DOI: 10.1016/j.biopha.2016.08.060.
  • Boraschi, D.; Swartzwelter, B. J.; Italiani, P. Interaction of Engineered Nanomaterials with the Immune System: health-Related Safety and Possible Benefits. Curr. Opin. Toxicol. 2018, 10, 74–83. DOI: 10.1016/j.cotox.2018.02.002.
  • Bartneck, M.; Heffels, K. H.; Pan, Y.; Bovi, M.; Zwadlo-Klarwasser, G.; Groll, J. Inducing Healing-like Human Primary Macrophage Phenotypes by 3D Hydrogel Coated Nanofibres. Biomaterials. 2012, 33, 4136–4146. DOI: 10.1016/j.biomaterials.2012.02.050.
  • Feng, X.; Chen, A.; Zhang, Y.; Wang, J.; Shao, L.; Wei, L. Application of Dental Nanomaterials: Potential Toxicity to the Central Nervous System. Int. J. Nanomedicine. 2015, 10, 3547–3565.
  • Nassar, H.; Kantarci, A.; van Dyke, T. E. Diabetic Periodontitis: A Model for Activated Innate Immunity and Impaired Resolution of Inflammation. Periodontol. 2007, 43, 233–444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.