461
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

BC enhanced photocurable hydrogel based on 3D bioprinting for nasal cartilage repair

, , , , , , , , , & show all
Pages 702-713 | Received 20 Sep 2021, Accepted 10 Mar 2022, Published online: 09 Apr 2022

References

  • Jessop, Z. M.; Al-Sabah, A.; Gao, N.; Kyle, S.; Thomas, B.; Badiei, N.; Hawkins, K.; Whitaker, I. S. Printability of Pulp Derived Crystal, Fibril and Blend Nanocellulose-Alginate Bioinks for Extrusion 3D Bioprinting. Biofabrication 2019, 11, 045006. DOI: 10.1088/1758-5090/ab0631.
  • Wei, J.; Zhang, J.; Herrler, T.; Wei, S.; Chen, Q.; Li, Q.; He, J.; Dai, C. Correction of Severe Short Nose Using a Costal Cartilage Extension Framework. Ann. Plast. Surg. 2020, 85, 472–475. DOI: 10.1097/SAP.0000000000002395.
  • Ruiz-Cantu, L.; Gleadall, A.; Faris, C.; Segal, J.; Shakesheff, K.; Yang, J. Multi-Material 3D Bioprinting of Porous Constructs for Cartilage Regeneration. Mater Sci Eng C Mater Biol Appl. 2020, 109, 110578. DOI: 10.1016/j.msec.2019.110578.
  • Langer, R.; Vacanti, J. Tissue engineering]. Science 1993, 260, 920–926. DOI: 10.1126/science.8493529.
  • Shi, B.; Huang, H. Computational Technology for Nasal Cartilage-Related Clinical Research and Application. Int. J. Oral Sci. 2020, 12, 21. DOI: 10.1038/s41368-020-00089-y.
  • Bittner, S. M.; Guo, J. L.; Melchiorri, A.; Mikos, A. G. Three-Dimensional Printing of Multilayered Tissue Engineering Scaffolds. Mater. Today 2018, 21, 861–874. DOI: 10.1016/j.mattod.2018.02.006.
  • Hasturk, O.; Jordan, K. E.; Choi, J.; Kaplan, D. L. Enzymatically Crosslinked Silk and Silk-Gelatin Hydrogels with Tunable Gelation Kinetics, Mechanical Properties and Bioactivity for Cell Culture and Encapsulation. Biomaterials 2020, 232, 119720. DOI: 10.1016/j.biomaterials.2019.119720.
  • Sun, M.; Sun, X.; Wang, Z.; Guo, S.; Yu, G.; Yang, H. Synthesis and Properties of Gelatin Methacryloyl (GelMA) Hydrogels and Their Recent Applications in Load-Bearing Tissue. Polymers 2018, 10, 1290. DOI: 10.3390/polym10111290.
  • Yue, K.; Trujillo-de Santiago, G.; Alvarez, M. M.; Tamayol, A.; Annabi, N.; Khademhosseini, A. Synthesis, Properties, and Biomedical Applications of Gelatin Methacryloyl (GelMA) Hydrogels. Biomaterials 2015, 73, 254–271. DOI: 10.1016/j.biomaterials.2015.08.045.
  • Lam, T.; Dehne, T.; Krüger, J. P.; Hondke, S.; Endres, M.; Thomas, A.; Lauster, R.; Sittinger, M.; Kloke, L. Photopolymerizable Gelatin and Hyaluronic Acid for Stereolithographic 3D Bioprinting of Tissue‐Engineered Cartilage. J. Biomed. Mater. Res. 2019, 107, 2649–2657. DOI: 10.1002/jbm.b.34354.
  • Genther, D.; Papel, I. Surgical Nasal Implants: Indications and Risks. Facial Plast. Surg. 2016, 32, 488–499. DOI: 10.1055/s-0036-1592101.
  • Shirahama, H.; Lee, B. H.; Tan, L. P.; Cho, N.-J. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis. Sci. Rep. 2016, 6, 31036. DOI: 10.1038/srep31036.
  • Lee, B.H.; Lum, N.; Seow, L.Y.; Lim, P.Q.; Tan, L.P. Synthesis and Characterization of Types a and B Gelatin Methacryloyl for Bioink Applications. Materials 2016,  9, 797. DOI: 10.3390/ma9100797.
  • Zhou, X.; Tenaglio, S.; Esworthy, T.; Hann, S. Y.; Cui, H.; Webster, T. J.; Fenniri, H.; Zhang, L. G. 3D Printing Biologically-Inspired DNA Based Gradient Scaffolds for Cartilage Tissue Regeneration. ACS Appl. Mater. Interfaces 2020, 12, 33219–33228. DOI: 10.1021/acsami.0c07918.
  • Sreekumaran, S.; Radhakrishnan, A.; Rauf, A. A.; Kurup, G. M. Nanohydroxyapatite Incorporated Photocrosslinked Gelatin Methacryloyl/Poly (Ethylene Glycol) Diacrylate Hydrogel for Bone Tissue Engineering. Prog. Biomater. 2021, 10, 43–51. DOI: 10.1007/s40204-021-00150-x.
  • Wang, T.; Migliori, B.; Miccoli, B.; Shin, S. R. Bioinspired Soft Robot with Incorporated Microelectrodes. J. Vis. Exp. 2020, 156, e60717. DOI: 10.3791/60717.
  • Xiao, S.; Zhao, T.; Wang, J.; Wang, C.; Du, J.; Ying, L.; Lin, J.; Zhang, C.; Hu, W.; Wang, L.; et al. Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: An Effective Strategy for Tissue Engineering. Stem Cell Rev. Rep. 2019, 15, 664–679. DOI: 10.1007/s12015-019-09893-4.
  • Chen, J.; Yang, J.; Wang, L.; Zhang, X.; Heng, B. C.; Wang, D. A.; Ge, Z. Modified Hyaluronic Acid Hydrogels with Chemical Groups That Facilitate Adhesion to Host Tissues Enhance Cartilage Regeneration. Bioact. Mater. 2021, 6, 1689–1698. DOI: 10.1016/j.bioactmat.2020.11.020.
  • Chung, J. H.; Kade, J. C.; Jeiranikhameneh, A.; Ruberu, K.; Mukherjee, P.; Yue, Z., Wallace, G. G. 3D Hybrid Printing Platform for Auricular Cartilage Reconstruction. Biomed. Phys. Eng. Express 2019, 6, 035003. DOI: 10.1088/2057-1976/ab54a7.
  • Ma, K.; Zhao, T.; Yang, L.; Wang, P.; Jin, J.; Teng, H.; Xia, D.; Zhu, L.; Li, L.; Jiang, Q.; et al. Application of Robotic-Assisted in Situ 3D Printing in Cartilage Regeneration with Hama Hydrogel: An in Vivo Study. J. Adv. Res. 2020, 23, 123–132. DOI: 10.1016/j.jare.2020.01.010.
  • Fan, Y.; Yue, Z.; Lucarelli, E.; Wallace, G. G. Hybrid Printing Using Cellulose Nanocrystals Reinforced GelMA/Hama Hydrogels for Improved Structural Integration. Adv. Healthcare Mater. 2020, 9, 2001410. DOI: 10.1002/adhm.202001410.
  • Yang, F.; Zhao, J.; Koshut, W. J.; Watt, J.; Riboh, J. C.; Gall, K.; Wiley, B. J. A Synthetic Hydrogel Composite with the Mechanical Behavior and Durability of Cartilage. Adv. Funct. Mater. 2020, 30, 2003451. DOI: 10.1002/adfm.202003451.
  • Wu, Z. Y.; Liang, H. W.; Chen, L. F.; Hu, B. C.; Yu, S. H. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials. Acc. Chem. Res. 2016, 49, 96–105. DOI: 10.1021/acs.accounts.5b00380.
  • Svensson, A.; Nicklasson, E.; Harrah, T.; Panilaitis, B.; Kaplan, D. L.; Brittberg, M.; Gatenholm, P. Bacterial Cellulose as a Potential Scaffold for Tissue Engineering of Cartilage. Biomaterials Guildford 2005, 26, 419–431. DOI: 10.1016/j.biomaterials.2004.02.049.
  • Bektas, C. K.; Hasirci, V. Mimicking Corneal Stroma Using Keratocyte‐Loaded Photopolymerizable Methacrylated Gelatin Hydrogels. J. Tissue Eng. Regener. Med. 2018, 12, e1899–e1910. DOI: 10.1002/term.2621.
  • Velasco-Rodriguez, B.; Diaz-Vidal, T.; Rosales-Rivera, L. C.; García-González, C. A.; Alvarez-Lorenzo, C.; Al-Modlej, A.; Domínguez-Arca, V.; Prieto, G.; Barbosa, S.; Soltero Martínez, J. F. A.; et al. Hybrid Methacrylated Gelatin and Hyaluronic Acid Hydrogel Scaffolds. Preparation and Systematic Characterization for Prospective Tissue Engineering Applications. Int. J. Mol. Sci. 2021, 22, 6758. DOI: 10.3390/ijms22136758.
  • Ouyang, L.; Ao, R. Y.; Zhao, Y.; Sun, W. Effect of Bioink Properties on Printability and Cell Viability for 3D Bioplotting of Embryonic Stem Cells. Biofabrication 2016, 8, 035020. DOI: 10.1088/1758-5090/8/3/035020.
  • Aldana, A.; Malatto, L.; Rehman, M.; Boccaccini, A.; Abraham, G. Fabrication of Gelatin Methacrylate (GelMA) Scaffolds with Nano- and Micro-Topographical and Morphological Features. Nanomaterials 2019, 9, 120. DOI: 10.3390/nano9010120.
  • Farshi Azhar, F.; Olad, A.; Mirmohseni, A. Development of Novel Hybrid Nanocomposites Based on Natural Biodegradable Polymer–Montmorillonite/Polyaniline: Preparation and Characterization. Polym. Bull. 2014, 71, 1591–1610. DOI: 10.1007/s00289-014-1143-0.
  • Pawlak, A.; Mucha, M. Thermogravimetric and FTIR Studies of Chitosan Blends. Thermochim. Acta 2003, 396, 153–166. DOI: 10.1016/S0040-6031(02)00523-3.
  • Gutiérrez, M. C.; García-Carvajal, Z. Y.; Jobbágy, M.; Yuste, L.; Rojo, F.; Abrusci, C.; Catalina, F.; del Monte, F.; Ferrer, M. L. Hydrogel Scaffolds with Immobilized Bacteria for 3D Cultures. Chem. Mater. 2007, 19, 1968–1973. DOI: 10.1021/cm062882s.
  • Kim, J.; Cai, Z.; Lee, H. S.; Choi, G. S.; Lee, D. H.; Jo, C. Preparation and Characterization of a Bacterial Cellulose/Chitosan Composite for Potential Biomedical Application. J. Polym. Res. 2011, 18, 739–744. DOI: 10.1007/s10965-010-9470-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.