144
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Controlled preparation of cholesterol-bearing polycations with pendent l-lysine for efficient gene delivery

, , , , &
Pages 750-758 | Received 01 Dec 2021, Accepted 24 Mar 2022, Published online: 13 Apr 2022

References

  • Áyen, Á.; Jiménez Martínez, Y.; Boulaiz, H. Targeted Gene Delivery Therapies for Cervical Cancer. Cancers 2020, 12, 1301. DOI: 10.3390/cancers12051301.
  • Van den Berg, A. I. S.; Yun, C.-O.; Schiffelers, R. M.; Hennink, W. E. Polymeric Delivery Systems for Nucleic Acid Therapeutics: Approaching the Clinic. J. Control. Release 2021, 331, 121–141.
  • Bharatiya, D.; Patra, S.; Parhi, B.; Swain, S. K. A Materials Science Approach towards Bioinspired Polymeric Nanocomposites: A Comprehensive Review. Int. J. Polym. Mater. Polym. Biomater. DOI: 10.1080/00914037.2021.1990057.
  • Sarvari, R.; Nouri, M.; Agbolaghi, S.; Roshangar, L.; Sadrhaghighi, A.; Seifalian, A. M.; Keyhanvar, P. A Summary on Non-Viral Systems for Gene Delivery Based on Natural and Synthetic Polymers. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 246–265. DOI: 10.1080/00914037.2020.1825081.
  • Xu, C.; Tian, H.; Chen, X. Recent Progress in Cationic Polymeric Gene Carriers for Cancer Therapy. Sci. China Chem. 2017, 60, 319–328. DOI: 10.1007/s11426-016-0466-x.
  • Thompson, M.; Scholz, C. Highly Branched Polymers Based on Poly(Amino Acid)s for Biomedical Application. Nanomaterials 2021, 11, 1119. DOI: 10.3390/nano11051119.
  • Liu, Y.; Yin, L. α-Amino Acid N-Carboxyanhydride (NCA)-Derived Synthetic Polypeptides for Nucleic Acids Delivery. Adv. Drug Deliv. Rev. 2021, 171, 139–163.
  • Li, H.; Luo, T.; Sheng, R.; Sun, J.; Wang, Z.; Cao, A. Achieving High Gene Delivery Performance with Caveolae-Mediated Endocytosis Pathway by (l)-Arginine/(l)-Histidine Co-Modified Cationic Gene Carriers. Colloids Surf. B Biointerfaces 2016, 148, 73–84.
  • Li, H.; Luo, T.; Sheng, R.; Sun, J.; Wang, Z.; Cao, A. Endoplasmic Reticulum Localization of Poly(ω-Aminohexyl Methacrylamide)s Conjugated with (l-)-Arginines in Plasmid DNA Delivery. Biomaterials 2013, 34, 7923–7938.
  • Zhao, J.; Ullah, I.; Gao, B.; Guo, J.; Ren, X.; Xia, S.; Zhang, W.; Feng, Y. Agmatine-Grafted Bioreducible Poly(l-Lysine) for Gene Delivery with Low Cytotoxicity and High Efficiency. J. Mater. Chem. B 2020, 8, 2418–2430. DOI: 10.1039/C9TB02641J.
  • Korogiannaki, M.; Samsom, M.; Schmidt, T. A.; Sheardown, H. Surface-Functionalized Model Contact Lenses with a Bioinspired Proteoglycan 4 (PRG4)-Grafted Layer. ACS Appl. Mater. Interfaces 2018, 10, 30125–30136.
  • Tang, M.; Dong, H.; Li, Y.; Ren, T. Harnessing the PEG-Cleavable Strategy to Balance Cytotoxicity, Intracellular Release and the Therapeutic Effect of Dendrigraft Poly-l-Lysine for Cancer Gene Therapy. J. Mater. Chem. B 2016, 4, 1284–1295.
  • Ryu, K.; Lee, M. K.; Park, J.; Kim, T. Il. PH-Responsive Charge-Conversional Poly(Ethylene Imine)-Poly(l-Lysine)-Poly(l-Glutamic Acid) with Self-Assembly and Endosome Buffering Ability for Gene Delivery Systems. ACS Appl. Bio Mater. 2018, 1, 1496–1504. DOI: 10.1021/acsabm.8b00428.
  • Francoia, J. P.; Vial, L. Everything You Always Wanted to Know about Poly-l-Lysine Dendrigrafts (but Were Afraid to Ask). Chemistry 2018, 24, 2806–2814. DOI: 10.1002/chem.201704147.
  • Linsha Mali, A.; Priya, S. S.; Rekha, M. R. Hydrophobic and Hydrophilic Modifications of Polyethylenimine towards Gene Delivery Applications. J. Appl. Polym. Sci. 2021, 138, 51323. DOI: 10.1002/app.51323.
  • Liu, Z.; Zhang, Z.; Zhou, C.; Jiao, Y. Hydrophobic Modifications of Cationic Polymers for Gene Delivery. Prog. Polym. Sci. 2010, 35, 1144–1162. DOI: 10.1016/j.progpolymsci.2010.04.007.
  • Han, S.; Cheng, Q.; Wu, Y.; Zhou, J.; Long, X.; Wei, T.; Huang, Y.; Zheng, S.; Zhang, J.; Deng, L.; et al. Effects of Hydrophobic Core Components in Amphiphilic PDMAEMA Nanoparticles on SiRNA Delivery. Biomaterials 2015, 48, 45–55.
  • Du, L.; Wang, C.; Meng, L.; Cheng, Q.; Zhou, J.; Wang, X.; Zhao, D.; Zhang, J.; Deng, L.; Liang, Z.; et al. The Study of Relationships between PKa Value and SiRNA Delivery Efficiency Based on Tri-Block Copolymers. Biomaterials 2018, 176, 84–93. DOI: 10.1016/j.biomaterials.2018.05.046.
  • Cheng, Q.; Du, L.; Meng, L.; Han, S.; Wei, T.; Wang, X.; Wu, Y.; Song, X.; Zhou, J.; Zheng, S.; et al. The Promising Nanocarrier for Doxorubicin and SiRNA Co-Delivery by PDMAEMA-Based Amphiphilic Nanomicelles. ACS Appl. Mater. Interfaces. 2016, 8, 4347–4356.
  • Kim, H. A.; Park, J. H.; Lee, S.; Choi, J. S.; Rhim, T.; Lee, M. Combined Delivery of Dexamethasone and Plasmid DNA in an Animal Model of LPS-Induced Acute Lung Injury. J. Control. Release 2011, 156, 60–69. DOI: 10.1016/j.jconrel.2011.06.041.
  • Piao, C.; Park, J. H.; Lee, M. Anti-Inflammatory Therapeutic Effect of Adiponectin Gene Delivery Using a Polymeric Carrier in an Acute Lung Injury Model. Pharm. Res. 2017, 34, 1517–1526. DOI: 10.1007/s11095-017-2175-6.
  • Neamnark, A.; Suwantong, O.; Bahadur, R. K. C.; Hsu, C. Y. M.; Supaphol, P.; Uludağ, H. Aliphatic Lipid Substitution on 2 KDa Polyethylenimine Improves Plasmid Delivery and Transgene Expression. Mol. Pharm. 2009, 6, 1798–1815. DOI: 10.1021/mp900074d.
  • Hosta-Rigau, L.; Zhang, Y.; Teo, B. M.; Postma, A.; Städler, B. Cholesterol-a Biological Compound as a Building Block in Bionanotechnology. Nanoscale 2013, 5, 89–109.
  • Misiak, P.; Markiewicz, K. H.; Szymczuk, D.; Wilczewska, A. Z. Polymeric Drug Delivery Systems Bearing Cholesterol Moieties: A Review. Polymers 2020, 12, 2620. DOI: 10.3390/polym12112620.
  • Ercole, F.; Whittaker, M. R.; Quinn, J. F.; Davis, T. P. Cholesterol Modified Self-Assemblies and Their Application to Nanomedicine. Biomacromolecules 2015, 16, 1886–1914.
  • Wang, Z.; Luo, T.; Sheng, R.; Li, H.; Sun, J.; Cao, A. Amphiphilic Diblock Terpolymer PMAgala-b-P(MAA-co-MAChol)s with Attached Galactose and Cholesterol Grafts and Their Intracellular PH-Responsive Doxorubicin Delivery. Biomacromolecules 2016, 17, 98–110.
  • Wang, Z.; Luo, T.; Cao, A.; Sun, J.; Jia, L.; Sheng, R. Morphology-Variable Aggregates Prepared from Cholesterol-Containing Amphiphilic Glycopolymers: Their Protein Recognition/Adsorption and Drug Delivery Applications. Nanomaterials 2018, 8, 136. DOI: 10.3390/nano8030136.
  • Pishavar, E.; Oroojalian, F.; Ramezani, M.; Hashemi, M. Cholesterol-Conjugated PEGylated PAMAM as an Efficient Nanocarrier for Plasmid Encoding Interleukin-12 Immunogene Delivery toward Colon Cancer Cells. Biotechnol. Prog. 2020, 36, e2952.
  • Han, S. O.; Mahato, R. I.; Kim, S. W. Water-Soluble Lipopolymer for Gene Delivery. Bioconjugate Chem. 2001, 12, 337–345. DOI: 10.1021/bc000120w.
  • Liu, Y.; Chen, D.; Li, J.; Xia, D.; Yu, M.; Tao, J.; Zhang, X.; Li, L.; Gan, Y. NPC1L1-Targeted Cholesterol-Grafted Poly(β-Amino Ester)/PDNA Complexes for Oral Gene Delivery. Adv. Healthcare Mater. 2019, 8, 1800934. DOI: 10.1002/adhm.201800934.
  • Laskar, P.; Somani, S.; Altwaijry, N.; Mullin, M.; Bowering, D.; Warzecha, M.; Keating, P.; Tate, R. J.; Leung, H. Y.; Dufès, C. Redox-Sensitive, Cholesterol-Bearing PEGylated Poly(Propylene Imine)-Based Dendrimersomes for Drug and Gene Delivery to Cancer Cells. Nanoscale 2018, 10, 22830–22847.
  • Sheng, R.; Luo, T.; Zhu, Y.; Li, H.; Sun, J.; Chen, S.; Sun, W.; Cao, A. The Intracellular Plasmid DNA Localization of Cationic Reducible Cholesterol-Disulfide Lipids. Biomaterials 2011, 32, 3507–3519.
  • Sheng, R.; Luo, T.; Li, H.; Sun, J.; Wang, Z.; Cao, A. Cholesterol-Based Cationic Lipids for Gene Delivery: Contribution of Molecular Structure Factors to Physico-Chemical and Biological Properties. Colloids Surf. B Biointerfaces 2014, 116, 32–40.
  • Sheng, R.; Wang, Z.; Luo, T.; Cao, A.; Sun, J.; Kinsella, J. M. Skeleton-Controlled PDNA Delivery of Renewable Steroid-Based Cationic Lipids, the Endocytosis Pathway Analysis and Intracellular Localization. IJMS. 2018, 19, 369. DOI: 10.3390/ijms19020369.
  • Sun, J.; Luo, T.; Sheng, R.; Li, H.; Chen, S.; Hu, F.; Cao, A. Preparation of Functional Water-Soluble Low-Cytotoxic Poly(Methacrylate)s with Pendant Cationic L-Lysines for Efficient Gene Delivery. Macromol. Biosci. 2013, 13, 35–47.
  • Sun, J.; Sheng, R.; Luo, T.; Wang, Z.; Li, H.; Cao, A. Synthesis of Diblock/Statistical Cationic Glycopolymers with Pendant Galactose and Lysine Moieties: Gene Delivery Application and Intracellular Behaviors. J. Mater. Chem. B 2016, 4, 4696–4706. DOI: 10.1039/C6TB00969G.
  • Sun, J.; Luo, T.; Sheng, R.; Li, H.; Wang, Z.; Cao, A. Intracellular Plasmid DNA Delivery by Self-Assembled Nanoparticles of Amphiphilic PHML-b-PLLA-b-PHML Copolymers and the Endocytosis Pathway Analysis. J. Biomater. Appl. 2016, 31, 606–621.
  • Moad, G.; Chong, Y. K.; Postma, A.; Rizzardo, E.; Thang, S. H. Advances in RAFT Polymerization: The Synthesis of Polymers with Defined End-Groups. Polymer 2005, 46, 8458–8468. DOI: 10.1016/j.polymer.2004.12.061.
  • Li, Y.; Cui, L.; Li, Q.; Jia, L.; Xu, Y.; Fang, Q.; Cao, A. Novel Symmetric Amphiphilic Dendritic Poly(L-Lysine)-b-Poly(L-Lactide)-b-Dendritic Poly(L-Lysine) with High Plasmid DNA Binding Affinity as a Biodegradable Gene Carrier. Biomacromolecules 2007, 8, 1409–1416.
  • Eltoukhy, A. A.; Siegwart, D. J.; Alabi, C. A.; Rajan, J. S.; Langer, R.; Anderson, D. G. Effect of Molecular Weight of Amine End-Modified Poly(β-Amino Ester)s on Gene Delivery Efficiency and Toxicity. Biomaterials 2012, 33, 3594–3603.
  • Sheng, R.; Luo, T.; Li, H.; Sun, J.; Wang, Z.; Cao, A. “Click” Synthesized Sterol-Based Cationic Lipids as Gene Carriers, and the Effect of Skeletons and Headgroups on Gene Delivery. Bioorganic Med. Chem. 2013, 21, 6366–6377. DOI: 10.1016/j.bmc.2013.08.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.