129
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The enhanced encapsulation, release, and oral hypoglycemic performance of a biomacromolecule surface modified insulin-loaded halloysite nanocomposite: an in vitro and in vivo study

, , , , , & show all
Pages 1151-1160 | Received 17 Mar 2022, Accepted 04 Jun 2022, Published online: 24 Jun 2022

References

  • Kassem, M.; Ali, A.; El-Badrawy, A. E. Formulation, Characterization and In-Vivo Application of Oral Insulin Nanotechnology Using Different Biodegradable Polymers: Advanced Drug Delivery System. Int. J. Pharm. Sci. Res. 2018, 9, 3664–3677.
  • Rathore, P.; Mahor, A.; Jain, S.; Haque, A.; Kesharwani, P. Formulation Development, In Vitro and In Vivo Evaluation of Chitosan Engineered Nanoparticles for Ocular Delivery of Insulin. Chem. Sci. 2020, 10, 43629–43639.
  • Benyettou, F.; Kaddour, N.; Prakasam, T.; Das, G.; Sharma, S. K.; Thomas, S. A.; Bekhti-Sari, F.; Whelan, J.; Alkhalifah, M. A.; Khair, M.; et al. In Vivo Oral Insulin Delivery via Covalent Organic Frameworks. Chem. Sci. 2021, 12, 6037–6047. DOI: 10.1039/D0SC05328G.
  • Li, L.; Jiang, G. H.; Yu, W. J.; Liu, D. P.; Chen, H.; Liu, Y. K.; Tong, Z. Z.; Kong, X. D.; Yao, J. M. Preparation of Chitosan-Based Multifunctional Nanocarriers Overcoming Multiple Barriers for Oral Delivery of Insulin. Mater. Sci. Eng. C 2017, 70, 278–286. DOI: 10.1016/j.msec.2016.08.083.
  • Ansari, M. J.; Anwer, M. K.; Jamil, S.; Al-Shdefat, R.; Ali, B. E.; Ahmad, M. M.; Ansari, M. N. Enhanced Oral Bioavailability of Insulin-Loaded Solid Lipid Nanoparticles: Pharmacokinetic Bioavailability of Insulin-Loaded Solid Lipid Nanoparticles in Diabetic Rats. Drug Deliv. 2016, 23, 1972–1979.
  • Sun, S. P.; Liang, N.; Gong, X. F.; An, W. W.; Kawashima, Y.; Cui, F. D.; Yan, P. F. Multifunctional Composite Microcapsules for Oral Delivery of Insulin. IJMS 2017, 19, 54. DOI: 10.3390/ijms19010054.
  • Li, L.; Jiang, G. H.; Yu, W. J.; Liu, D. P.; Chen, H.; Liu, Y. K.; Huang, Q.; Tong, Z. Z.; Yao, J. M.; Kong, X. D. A Composite Hydrogel System Containing Glucose-Responsive Nanocarriers for Oral Delivery of Insulin. Mater. Sci. Eng. C 2016, 69, 37–45. DOI: 10.1016/j.msec.2016.06.059.
  • Liu, D. P.; Jiang, G. H.; Yu, W. J.; Li, L.; Tong, Z. Z.; Yao, J. M.; Kong, X. D. Oral Delivery of Insulin Using CaCO3-Based Composite Nanocarriers with Hyaluronic Acid Coatings. Mater. Lett. 2017, 188, 263–266. DOI: 10.1016/j.matlet.2016.10.117.
  • Xu, B.; Jiang, G. H.; Yu, W. J.; Liu, D. P.; Liu, Y. K.; Kong, X. D.; Yao, J. M. Preparation of Poly(Lactic-co-Glycolic Acid) and Chitosan Composite Nanocarriers via Electrostatic Self Assembly for Oral Delivery of Insulin. Mater. Sci. Eng. C 2017, 78, 420–428. DOI: 10.1016/j.msec.2017.04.113.
  • Wang, X.; Zhang, G. L.; Qi, F.; Cheng, Y. F.; Lu, X. G.; Wang, L.; Zhao, J.; Zhao, B. Enhanced Bone Regeneration Using an Insulin-Loaded Nano-Hydroxyapatite/Collagen/PLGA Composite Scaffold. IJN 2017, 13, 117–127. DOI: 10.2147/IJN.S150818.
  • Husain, T.; Shoaib, M. H.; Ahmed, F. R.; Yousuf, R. I.; Farooqi, S.; Siddiqui, F.; Imtiaz, M. S.; Maboos, M.; Jabeen, S. Investigating Halloysite Nanotubes as a Potential Platform for Oral Modified Delivery of Different BCS Class Drugs: Characterization, Optimization, and Evaluation of Drug Release Kinetics. IJN. 2021, 16, 1725–1741. DOI: 10.2147/IJN.S299261.
  • Massaro, M.; Noto, R.; Riela, S. Present and Future Perspectives on Halloysite Clay Minerals. Molecules 2020, 25, 4863. DOI: 10.3390/molecules25204863.
  • Massaro, M.; Riela, S.; Cavallaro, G.; Gruttadauria, M.; Milioto, S.; Noto, R.; Lazzara, G. Giuseppe, Eco-Friendly Functionalization of Natural Halloysite Clay Nanotube with Ionic Liquids by Microwave Irradiation for Suzuki Coupling Reaction. J. Organomet. Chem. 2014, 749, 410–415. DOI: 10.1016/j.jorganchem.2013.10.044.
  • Hanid, N. A.; Wahit, M. U.; Guo, Q. P.; Mahmoodian, S.; Soheilmoghaddam, M. Development of Regenerated Cellulose/Halloysites Nanocomposites via Ionic Liquids. Carbohydr. Polym. 2014, 99, 91–97. DOI: 10.1016/j.carbpol.2013.07.080.
  • Cheng, Z. L.; Qin, X. X.; Liu, Z.; Qin, D. Z. Electrospinning Preparation and Mechanical Properties of PVA/HNTs Composite Nanofibers. Polym. Adv. Technol. 2017, 28, 768–774. DOI: 10.1002/pat.3975.
  • Levis, S. R.; Deasy, P. B. Characterisation of Halloysite for Use as a Microtubular Drug Delivery System. Int. J. Pharm. 2002, 243, 125–134. DOI: 10.1016/S0378-5173(02)00274-0.
  • Levis, S. R.; Deasy, P. B. Use of Coated Microtubular Halloysite for the Sustained Release of Diltiazem Hydrochloride and Propranolol Hydrochloride. Int. J. Pharm. 2003, 253, 145–157. DOI: 10.1016/S0378-5173(02)00702-0.
  • Barman, M.; Mahmood, S.; Augustine, R.; Hasan, A.; Thomas, S.; Ghosal, K. Natural Halloysite Nanotubes/Chitosan Based Bio-Nanocomposite for Delivering Norfloxacin, an Anti-Microbial Agent in Sustained Release Manner. Int. J. Biol. Macromol. 2020, 162, 1849–1861. DOI: 10.1016/j.ijbiomac.2020.08.060.
  • Govindasamy, K.; Dahlan, N. A.; Janarthanan, P.; Goh, K. L.; Chai, S. P.; Pasbakhsh, P. Electrospun Chitosan/Polyethylene-Oxide (PEO)/Halloysites (HAL) Membranes for Bone Regeneration Applications. Appl. Clay Sci. 2020, 190, 105601. DOI: 10.1016/j.clay.2020.105601.
  • Musa, N.; Wong, T. W. Design of Polysaccharidic Nano-in-Micro Soft Agglomerates as Primary Oral Drug Delivery Vehicle for Colon-Specific Targeting. Carbohydr. Polym. 2020, 247, 116673. DOI: 10.1016/j.carbpol.2020.116673.
  • Tanuma, H.; Kiuchi, H.; Kai, W. H.; Yazawa, K.; Inoue, Y. Characterization and Enzymatic Degradation of PEG-Cross-Linked Chitosan Hydrogel Films. J. Appl. Polym. Sci. 2009, 114, 1902–1907. DOI: 10.1002/app.30277.
  • Meng, Q. H.; Hu, J. L.; Ho, K. C.; Ji, F. L.; Chen, S. J. The Shape Memory Properties of Biodegradable Chitosan/Poly(l-Lactide) Composites. J. Polym. Environ. 2009, 17, 212–224. DOI: 10.1007/s10924-009-0141-z.
  • Liu, J.; Pu, H.; Liu, S.; Kan, J.; Jin, C. H. Synthesis, Characterization, Bioactivity and Potential Application of Phenolic Acid Grafted Chitosan: A Review. Carbohydr. Polym. 2017, 174, 999–1017. DOI: 10.1016/j.carbpol.2017.07.014.
  • Yang, Z.; Huang, X.; Zhang, R.; Li, J.; Xu, Q.; Hu, X. Novel Urchin-like In2O3–Chitosan Modified Electrode for Direct Electrochemistry of Glucose Oxidase and Biosensing. Electrochim. Acta. 2012, 70, 325–330. DOI: 10.1016/j.electacta.2012.03.075.
  • Chen, X.; Qin, P.; Li, J.; Yang, Z.; Wen, Z.; Jian, Z.; Zhao, J.; Hu, X.; Jiao, X. Impedance Immunosensor for Bovine Interleukin-4 Using an Electrode Modified with Reduced Graphene Oxide and Chitosan. Microchim. Acta. 2015, 182, 369–376. DOI: 10.1007/s00604-014-1331-5.
  • Zhou, C.; Song, H.; Zhang, F.; Liu, J.; Li, J.; Liu, B.; Liang, J. A Facile Method to Fabricate an Antimicrobial Coating Based on Poly(1-Vinyl-3-Allylimidazolium Iodide) (PAVI) and Poly(Ethylene Glycol) Dimethyl Acrylate (PEGDMA). Polym. Bull. 2019, 76, 5433–5449. DOI: 10.1007/s00289-018-2637-y.
  • Cai, M. T.; Zhang, J. X.; Chen, Y. W.; Cao, J.; Leng, M. T.; Hu, S. D.; Luo, X. L. Preparation and Characterization of Chitosan Composite Membranes Crosslinked by Carboxyl-Capped Poly(Ethylene Glycol). Chin. J. Polym. Sci. 2014, 32, 236–244. DOI: 10.1007/s10118-014-1373-5.
  • Sun, P.; Huang, W.; Jin, M. J.; Wang, Q. M.; Fan, B.; Kang, L.; Gao, Z. G. Chitosan-Based Nanoparticles for Survivin Targeted siRNA Delivery in Breast Tumor Therapy and Preventing Its Metastasis. IJN. 2016, 11, 4931–4945. DOI: 10.2147/IJN.S105427.
  • Garcia-Fuentes, M.; Alonso, M. J. Chitosan-Based Drug Nanocarriers: Where Do We Stand. J. Control Release 2012, 161, 496–504. DOI: 10.1016/j.jconrel.2012.03.017.
  • Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W. E. Chitosan-Based Delivery Systems for Protein Therapeutics and Antigens. Adv. Drug. Deliv. Rev. 2010, 62, 59–82. DOI: 10.1016/j.addr.2009.11.009.
  • Jusu, S. M.; Obayemi, J. D.; Salifu, A. A.; Nwazojie, C. C.; Uzonwanne, V. O.; Odusanya, O. S.; Soboyejo, W. O. PLGA-CS-PEG Microparticles for Controlled Drug Delivery in the Treatment of Triple Negative Breast Cancer Cells. Appl. Sci. 2021, 11, 7112. DOI: 10.3390/app11157112.
  • Lowry, O.; Rosebrough, N.; Farr, A. L.; Randall, R. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. DOI: 10.1016/S0021-9258(19)52451-6.
  • Al Aamri, Z. M.; Ali, B. H. Does Honey Have Any Salutary Effect against Streptozotocin-Induced Diabetes in Rats. J. Diabetes Metab. Dis. 2017, 16, 4. DOI: 10.1186/s40200-016-0278-y.
  • Morakinyo, A. O.; Samuel, T. A.; Adekunbi, D. A. Magnesium Upregulates Insulin Receptor and Glucose Transporter-4 in Streptozotocin-Nicotinamide-Induced Type-2 Diabetic Rats. Endocr. Regul. 2018, 52, 6–16. DOI: 10.2478/enr-2018-0002.
  • Li, L.; Huang, Z. J.; Li, L.; Chen, W. C.; Zhu, Z. M. Berberine in Combination with Insulin Has Additive Effects on Titanium Implants Osseointegration in Diabetes Mellitus Rats. Evid. Based Complement. Alternat. Med. 2015, 2015, 824259.
  • Pasbakhsh, P.; Churchman, G. J.; Keeling, J. L. Characterisation of Properties of Various Halloysites Relevant to Their Use as Nanotubes and Microfibre Fillers. Appl. Clay Sci. 2013, 74, 47–57. DOI: 10.1016/j.clay.2012.06.014.
  • Luo, Y. Y.; Humayun, A.; Murray, T. A.; Kemp, B. S.; McFarland, A.; Liu, X.; Mills, D. K. Cellular Analysis and Chemotherapeutic Potential of a bi-Functionalized Halloysite Nanotube. Pharmaceutics 2020, 12, 962. DOI: 10.3390/pharmaceutics12100962.
  • Yoshida, K. Development of Functional Thin Polymer Films Using a Layer-by-Layer Deposition Technique. J. Pharm. Soc. Jpn. 2017, 137, 1215–1221. DOI: 10.1248/yakushi.17-00128.
  • Cui, F.; Shi, K.; Zhang, L. Q.; Tao, A. J.; Kawashima, Y. Biodegradable Nanoparticles Loaded with Insulin–Phospholipid Complex for Oral Delivery: Preparation, In Vitro Characterization and In Vivo Evaluation. J. Control Release 2006, 114, 242–250. DOI: 10.1016/j.jconrel.2006.05.013.
  • Wu, J. Z.; Williams, G. R.; Li, H. Y.; Wang, D. X.; Li, S. D.; Zhu, L. M. Insulin-Loaded PLGA Microspheres for Glucose-Responsive Release. Drug Deliv. 2017, 24, 1513–1525. DOI: 10.1080/10717544.2017.1381200.
  • Chopra, S.; Bertrand, N.; Lim, J.-M.; Wang, A.; Farokhzad, O. C.; Karnik, R. Design of Insulin-Loaded Nanoparticles Enabled by Multistep Control of Nanoprecipitation and Zinc Chelation. ACS Appl. Mater. Interfaces 2017, 9, 11440–11450. DOI: 10.1021/acsami.6b16854.
  • Han, X.; Lu, Y.; Xie, J.; Zhang, E.; Zhu, H.; Du, H.; Wang, K.; Song, B.; Yang, C.; Shi, Y.; Cao, Z. Zwitterionic Micelles Efficiently Deliver Oral Insulin without Opening Tight Junctions. Nat. Nanotechnol. 2020, 15, 605–614. DOI: 10.1038/s41565-020-0693-6.
  • Zhao, X. H.; Shan, C.; Zu, Y. G.; Zhang, Y.; Wang, W. G.; Wang, K. L.; Sui, X. Y.; Li, R. Preparation, Characterization, and Evaluation In Vivo of Ins-SiO2-HP55 (Insulin-Loaded Silica Coating HP55) for Oral Delivery of Insulin. Int. J. Pharm. 2013, 454, 278–284. DOI: 10.1016/j.ijpharm.2013.06.051.
  • Mumuni, M. A.; Calister, U. E.; Aminu, N.; Franklin, K.; Oluseun, C. A. M.; Usman, M.; Abdulmumuni, B.; James, O. Y.; Ofokansi, K. C.; Anthony, A. A.; et al. Mucin-Grafted Polyethylene Glycol Microparticles Enable Oral Insulin Delivery for Improving Diabetic Treatment. Appl. Sci. 2020, 10, 2649. DOI: 10.3390/app10082649.
  • Fukuoka, Y.; Khafagy, E.; Goto, T.; Kamei, N.; Takayama, K.; Peppas, N. A.; Takeda-Morishita, M. Combination Strategy with Complexation Hydrogels and Cell-Penetrating Peptides for Oral Delivery of Insulin. Biol. Pharm. Bull. 2018, 41, 811–814. DOI: 10.1248/bpb.b17-00951.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.