310
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Magnetic polycaprolactone microspheres: drug encapsulation and control

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 143-153 | Received 18 Jul 2022, Accepted 30 Sep 2022, Published online: 13 Oct 2022

References

  • Helmy, H. S.; El-Sahar, A. E.; Sayed, R. H.; Shamma, R. N.; Salama, A. H.; Elbaz, E. M. Therapeutic Effects of Lornoxicam-Loaded Nanomicellar Formula in Experimental Models of Rheumatoid Arthritis. Int. J. Nanomedicine. 2017, 12, 7015–7023. DOI: 10.2147/IJN.S147738.
  • Couvreur, P.; Barratt, G.; Fattal, E.; Vauthier, C. Nanocapsule Technology: A Review. Crit. Rev. Therap. Drug Carrier Syst. 2002, 19, 99–134. DOI: 10.1615/CritRevTherDrugCarrierSyst.v19.i2.10.
  • Trivedi, R.; Kompella, U. B. Nanomicellar Formulations for Sustained Drug Delivery: Strategies and Underlying Principles. Nanomedicine. 2010, 5, 485–505. DOI: 10.2217/nnm.10.10.
  • Zhang, X.; Xue, L.; Wang, J.; Liu, Q.; Liu, J.; Gao, Z.; Yang, W. Effects of Surface Modification on the Properties of Magnetic Nanoparticles/PLA Composite Drug Carriers and in Vitro Controlled Release Study. Colloids Surf. A. 2013, 431, 80–86. DOI: 10.1016/j.colsurfa.2013.04.021.
  • Park, J.; Kim, J. Y.; Pané, S.; Nelson, B. J.; Choi, H. Acoustically Mediated Controlled Drug Release and Targeted Therapy with Degradable 3D Porous Magnetic Microrobots. Adv. Healthcare Mater. 2021, 10, 2001096. DOI: 10.1002/adhm.202001096.
  • Singh, A. V.; Ansari, M. H. D.; Dayan, C. B.; Giltinan, J.; Wang, S.; Yu, Y.; Kishore, V.; Laux, P.; Luch, A.; Sitti, M. Multifunctional Magnetic Hairbot for Untethered Osteogenesis, Ultrasound Contrast Imaging and Drug Delivery. Biomaterials. 2019, 219, 119394. DOI: 10.1016/j.biomaterials.2019.119394.
  • Pena-Francesch, A.; Giltinan, J.; Sitti, M. Multifunctional and Biodegradable Self-Propelled Protein Motors. Nat. Commun. 2019, 10, 1–10.
  • Magdanz, V.; Khalil, I. S. M.; Simmchen, J.; Furtado, G. P.; Mohanty, S.; Gebauer, J.; Xu, H.; Klingner, A.; Aziz, A.; Medina-Sánchez, M. IRONSperm: Sperm-Templated Soft Magnetic Microrobots. Sci. Adv. 2020, 6, eaba5855. DOI: 10.1126/sciadv.aba5855.
  • Saad, E. M.; El Gohary, N. A.; El-Shenawy, B. M.; Handoussa, H.; Klingner, A.; Elwi, M.; Hamed, Y.; Khalil, I. S.; El Nashar, R. M.; Mizaikoff, B. Fabrication of Magnetic Molecularly Imprinted Beaded Fibers for Rosmarinic Acid. Nanomaterials. 2020, 10, 1478. DOI: 10.3390/nano10081478.
  • Tewabe, A.; Abate, A.; Tamrie, M.; Seyfu, A.; Siraj, E. A. Targeted Drug Delivery—from Magic Bullet to Nanomedicine: Principles, Challenges, and Future Perspectives. J. Multidiscip. Healthc. 2021, 14, 1711–1724. DOI: 10.2147/JMDH.S313968.
  • Yang, J.; Park, S. B.; Yoon, H. G.; Huh, Y. M.; Haam, S. Preparation of Poly ɛ-Caprolactone Nanoparticles Containing Magnetite for Magnetic Drug Carrier. Int. J. Pharm. 2006, 324, 185–190. DOI: 10.1016/j.ijpharm.2006.06.029.
  • Pietersz, G. A.; Wang, X.; Yap, M. L.; Lim, B.; Peter, K. Therapeutic Targeting in Nanomedicine: The Future Lies in Recombinant Antibodies. Nanomedicine. 2017, 12, 1873–1889. DOI: 10.2217/nnm-2017-0043.
  • Cao, Z.; Li, D.; Wang, J.; Xiong, M.; Yang, X. Direct Nucleus‐Targeted Drug Delivery Using Cascade pHe/Photo Dual‐Sensitive Polymeric Nanocarrier for Cancer Therapy. Small. 2019, 15, 1902022. DOI: 10.1002/smll.201902022.
  • Amin, M.; Huang, W.; Seynhaeve, A. L.; Ten Hagen, T. L. Hyperthermia and Temperature-Sensitive Nanomaterials for Spatiotemporal Drug Delivery to Solid Tumors. Pharmaceutics. 2020, 12, 1007. DOI: 10.3390/pharmaceutics12111007.
  • Saadat, M.; Manshadi, M. K.; Mohammadi, M.; Zare, M. J.; Zarei, M.; Kamali, R.; Sanati-Nezhad, A. Magnetic Particle Targeting for Diagnosis and Therapy of Lung Cancers. J. Control. Release. 2020, 328, 776–791. DOI: 10.1016/j.jconrel.2020.09.017.
  • Chowdhury, S. M.; Lee, T.; Willmann, J. K. Ultrasound-Guided Drug Delivery in Cancer. Ultrasonography 2017, 36, 171–184. DOI: 10.14366/usg.17021.
  • Linsley, C. S.; Wu, B. M. Recent Advances in Light-Responsive on-Demand Drug-Delivery Systems. Ther. Deliv. 2017, 8, 89–107. DOI: 10.4155/tde-2016-0060.
  • Rossin, R.; Versteegen, R. M.; Wu, J.; Khasanov, A.; Wessels, H. J.; Steenbergen, E. J.; Ten Hoeve, W.; Janssen, H. M.; Van Onzen, A. H.; Hudson, P. J.; et al. Chemically Triggered Drug Release from an Antibody-Drug Conjugate Leads to Potent Antitumour Activity in Mice. Nat. Commun. 2018, 9, 1–11.
  • Wang, J.; Xiong, Z.; Zheng, J.; Zhan, X.; Tang, J. Light-Driven Micro/Nanomotor for Promising Biomedical Tools: Principle, Challenge, and Prospect. Acc. Chem. Res. 2018, 51, 1957–1965. DOI: 10.1021/acs.accounts.8b00254.
  • Lu, X.; Shen, H.; Zhao, K.; Wang, Z.; Peng, H.; Liu, W. Micro‐/Nanomachines Driven by Ultrasonic Power Sources. Chem. Asian J. 2019, 14, 2406–2416. DOI: 10.1002/asia.201900281.
  • Guo, J.; Gallegos, J. J.; Tom, A. R.; Fan, D. Electric-Field-Guided Precision Manipulation of Catalytic Nanomotors for Cargo Delivery and Powering Nanoelectromechanical Devices. ACS Nano. 2018, 12, 1179–1187. DOI: 10.1021/acsnano.7b06824.
  • Chen, X. Z.; Hoop, M.; Mushtaq, F.; Siringil, E.; Hu, C.; Nelson, B. J.; Pané, S. Recent Developments in Magnetically Driven Micro-and Nanorobots. Appl. Mater. Today. 2017, 9, 37–48. DOI: 10.1016/j.apmt.2017.04.006.
  • Hosney, A.; Abdalla, J.; Amin, I. S.; Hamdi, N.; Khalil, I. S. M. In Vitro Validation of Clearing Clogged Vessels Using Microrobots. Presented at the 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, June 26–29, 2016.
  • Niedert, E. E.; Bi, C.; Adam, G.; Lambert, E.; Solorio, L.; Goergen, C. J.; Cappelleri, D. J. A Tumbling Magnetic Microrobot System for Biomedical Applications. Micromachines. 2020, 11, 861. DOI: 10.3390/mi11090861.
  • Kummer, M. P.; Abbott, J. J.; Kratochvil, B. E.; Borer, R.; Sengul, A.; Nelson, B. J. OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation. IEEE Trans. Robot. 2010, 26, 1006–1017. DOI: 10.1109/TRO.2010.2073030.
  • El-Boubbou, K. Magnetic Iron Oxide Nanoparticles as Drug Carriers: Preparation, Conjugation and Delivery. Nanomedicine. 2018, 13, 929–952. DOI: 10.2217/nnm-2017-0320.
  • Závišová, V.; Koneracká, M.; Štrbák, O.; Tomašovičová, N.; Kopčanský, P.; Timko, M.; Vavra, I. Encapsulation of Indomethacin in Magnetic Biodegradable Polymer Nanoparticles. J. Magn. Magn. Mater. 2007, 311, 379–382. DOI: 10.1016/j.jmmm.2006.11.177.
  • Mhlanga, N.; Sinha Ray, S.; Lemmer, Y.; Wesley-Smith, J. Polylactide-Based Magnetic Spheres as Efficient Carriers for Anticancer Drug Delivery. ACS Appl. Mater. Interfaces. 2015, 7, 22692–22701. DOI: 10.1021/acsami.5b07567.
  • Saravanan, M.; Bhaskar, K.; Maharajan, G.; Pillai, K. S. Ultrasonically Controlled Release and Targeted Delivery of Diclofenac Sodium via Gelatin Magnetic Microspheres. Int. J. Pharm. 2004, 283, 71–82. DOI: 10.1016/j.ijpharm.2004.06.023.
  • Butoescu, N.; Seemayer, C. A.; Palmer, G.; Guerne, P. A.; Gabay, C.; Doelker, E.; Jordan, O. Magnetically Retainable Microparticles for Drug Delivery to the Joint: Efficacy Studies in an Antigen-Induced Arthritis Model in Mice. Arthritis Res. Ther. 2009, 11, R72. DOI: 10.1186/ar2701.
  • Kim, H. J.; Lee, S. M.; Park, K. H.; Mun, C. H.; Park, Y. B.; Yoo, K. H. Drug-Loaded Gold/Iron/Gold Plasmonic Nanoparticles for Magnetic Targeted Chemo-Photothermal Treatment of Rheumatoid Arthritis. Biomaterials. 2015, 61, 95–102. DOI: 10.1016/j.biomaterials.2015.05.018.
  • Usta, A.; Man, K. P.; Strong, N.; Misak, H.; Wooley, P. H.; Asmatulu, R. Investigating MTX-Loaded Magnetic Nanocomposite Particles for Treatment of Rheumatoid Arthritis. J. Magn. Magn. Mater. 2020, 499, 166171. DOI: 10.1016/j.jmmm.2019.166171.
  • Agúndez, J. A.; Lucena, M. I.; Martínez, C.; Andrade, R. J.; Blanca, M.; Ayuso, P.; García-Martín, E. Assessment of Nonsteroidal Anti-Inflammatory Drug-Induced Hepatotoxicity. Expert Opin. Drug Metab. Toxicol. 2011, 7, 817–828. DOI: 10.1517/17425255.2011.574613.
  • Liang, J.; Li, H.; Yan, J.; Hou, W. Demulsification of Oleic-Acid-Coated Magnetite Nanoparticles for Cyclohexane-in-Water Nanoemulsions. Energy Fuels. 2014, 28, 6172–6178. DOI: 10.1021/ef501169m.
  • Yuanbi, Z.; Zumin, Q.; Huang, J. Preparation and Analysis of Fe3O4 Magnetic Nanoparticles Used as Targeted-Drug Carriers. Chin. J. Chem. Eng. 2008, 16, 451–455.
  • Veiseh, O.; Gunn, J. W.; Zhang, M. Design and Fabrication of Magnetic Nanoparticles for Targeted Drug Delivery and Imaging. Adv. Drug Deliv. Rev. 2010, 62, 284–304. DOI: 10.1016/j.addr.2009.11.002.
  • Kush, P.; Thakur, V.; Kumar, P. Formulation and in Vitro Evaluation of Propranolol Hydrochloride Loaded Polycaprolactone Microspheres. Int. J. Pharm. Sci. Rev. Res. 2013, 20, 282–290.
  • He, Y.; Majid, K.; Maqbool, M.; Hussain, T.; Yousaf, A. M.; Khan, I. U.; Mehmood, Y.; Aleem, A.; Arshad, M. S.; Younus, A.; et al. Formulation and Characterization of Lornoxicam-Loaded Cellulosic-Microsponge Gel for Possible Applications in Arthritis. Saudi Pharm. J. 2020, 28, 994–1003. DOI: 10.1016/j.jsps.2020.06.021.
  • Salviano, L. B.; Cardoso, T. M. D. S.; Silva, G. C.; Dantas, M. S. S.; Ferreira, A. D. M. Microstructural Assessment of Magnetite Nanoparticles (Fe3O4) Obtained by Chemical Precipitation under Different Synthesis Conditions. Mat. Res. 2018, 21, e20170764.
  • Ibarra, J.; Melendres, J.; Almada, M.; Burboa, M. G.; Taboada, P.; Juárez, J.; Valdez, M. A. Synthesis and Characterization of Magnetite/PLGA/Chitosan Nanoparticles. Mater. Res. Express 2015, 2, 095010. DOI: 10.1088/2053-1591/2/9/095010.
  • Cano, M.; Sbargoud, K.; Allard, E.; Larpent, C. Magnetic Separation of Fatty Acids with Iron Oxide Nanoparticles and Application to Extractive Deacidification of Vegetable Oils. Green Chem. 2012, 14, 1786–1795. DOI: 10.1039/c2gc35270b.
  • Yeo, Y.; Park, K. Control of Encapsulation Efficiency and Initial Burst in Polymeric Microparticle Systems. Arch. Pharm. Res. 2004, 27, 1–12. DOI: 10.1007/BF02980037.
  • Maravajhala, V.; Dasari, N.; Sepuri, A.; Joginapalli, S. Design and Evaluation of Niacin Microspheres. Indian J. Pharm. Sci. 2009, 71, 663–669. DOI: 10.4103/0250-474X.59549.
  • Natarajan, V.; Krithica, N.; Madhan, B.; Sehgal, P. K. Formulation and Evaluation of Quercetin Polycaprolactone Microspheres for the Treatment of Rheumatoid Arthritis. J. Pharm. Sci. 2011, 100, 195–205. DOI: 10.1002/jps.22266.
  • Mabrouk, M.; Bijukumar, D.; Mulla, J. A.; Chejara, D. R.; Badhe, R. V.; Choonara, Y. E.; Kumar, P.; du Toit, L. C.; Pillay, V. Enhancement of the Biomineralization and Cellular Adhesivity of Polycaprolactone-Based Hollow Porous Microspheres via Dopamine Bio-Activation for Tissue Engineering Applications. Mater. Lett. 2015, 161, 503–507. DOI: 10.1016/j.matlet.2015.08.146.
  • Monteiro, M. S.; Lunz, J.; Sebastião, P. J.; Tavares, M. I. B. Evaluation of Nevirapine Release Kinetics from Polycaprolactone Hybrids. Mater. Sci. Appl. 2016, 07, 680–701.
  • Dash, T. K.; Konkimalla, V. B. Poly-є-Caprolactone Based Formulations for Drug Delivery and Tissue Engineering: A Review. J. Control. Release. 2012, 158, 15–33. DOI: 10.1016/j.jconrel.2011.09.064.
  • Talevi, A.; Ruiz, M. E. Drug Release. In The ADME Encyclopedia. Cham: Springer, 2021.
  • Barnsley, L. C.; Carugo, D.; Aron, M.; Stride, E. Understanding the Dynamics of Superparamagnetic Particles under the Influence of High Field Gradient Arrays. Phys. Med. Biol. 2017, 62, 2333–2360.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.