181
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Characterization of isoniazid incorporation into chitosan-poly(aspartic acid) nanoparticles

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 190-199 | Received 18 Aug 2022, Accepted 04 Nov 2022, Published online: 16 Nov 2022

References

  • Pourshahab, P. S.; Gilani, K.; Moazeni, E.; Eslahi, H.; Fazeli, M. R.; Jamalifar, H. Preparation and Characterization of Spray Dried Inhalable Powders Containing Chitosan Nanoparticles for Pulmonary Delivery of Isoniazid. J. Microencapsul. 2011, 28, 605–613. DOI: 10.3109/02652048.2011.599437.
  • Zumla, A.; Raviglione, M.; Hafner, R.; Fordham von Reyn, C. Tuberculosis. N Engl. J. Med. 2013, 368, 745–755. DOI: 10.1056/nejmra1200894.
  • Mphande-Nyasulu, F. A.; Puengpipattrakul, P.; Praipruksaphan, M.; Keeree, A.; Ruanngean, K. Prevalence of Tuberculosis (TB), Including Multi-Drug-Resistant and Extensively-Drug-Resistant TB, and Association with Occupation in Adults at Sirindhorn Hospital, Bangkok. IJID Reg. 2022, 2, 141–148. DOI: 10.1016/j.ijregi.2022.01.004.
  • Shegokar, R.; Al Shaal, L.; Mitri, K. Present Status of Nanoparticle Research for Treatment of Tuberculosis. J. Pharm. Pharm. Sci. 2011, 14, 100–116. DOI: 10.18433/j3m59p.
  • Goudiaby, M. S.; Gning, L. D.; Diagne, M. L.; Dia, B. M.; Rwezaura, H.; Tchuenche, J. M. Optimal Control Analysis of a COVID-19 and Tuberculosis Co-Dynamics Model. Inform. Med. Unlocked 2022, 28, 100849. DOI: 10.1016/j.imu.2022.100849.
  • Migliori, G. B.; Besozzi, G.; Girardi, E.; Kliiman, K.; Lange, C.; Toungoussova, O. S.; Ferrara, G.; Cirillo, D. M.; Gori, A.; Matteelli, A.; et al. Clinical and Operational Value of the Extensively Drug-Resistant Tuberculosis Definition. Eur. Respir. J. 2007, 30, 623–626. DOI: 10.1183/09031936.00077307.
  • Shi, R.; Itagaki, N.; Sugawara, I. Overview of anti-Tuberculosis (TB) Drugs and Their Resistance Mechanisms. Mini Rev. Med. Chem. 2007, 7, 1177–1185. DOI: 10.2174/138955707782331740.
  • Bachir, M.; Guglielmetti, L.; Tunesi, S.; Billard-Pomares, T.; Chiesi, S.; Jaffré, J.; Langris, H.; Pourcher, V.; Schramm, F.; Lemaître, N.; et al. Isoniazid-Monoresistant Tuberculosis in France: Risk Factors, Treatment Outcomes and Adverse Events. Int. J. Infect. Dis. 2021, 107, 86–91. DOI: 10.1016/j.ijid.2021.03.093.
  • Garg, T.; Rath, G.; Goyal, A. K. Inhalable Chitosan Nanoparticles as Antitubercular Drug Carriers for an Effective Treatment of Tuberculosis. Artif. Cells. Nanomed. Biotechnol. 2016, 44, 997–1001. DOI: 10.3109/21691401.2015.1008508.
  • Hari, B. N. V.; Chitra, K. P.; Bhimavarapu, R.; Karunakaran, P.; Muthukrishnan, N.; Rani, B. S. Novel Technologies: A Weapon against Tuberculosis. Indian J. Pharmacol. 2010, 42, 338–344. DOI: 10.4103/0253-7613.71887.
  • Kushwaha, K.; Dwivedi, H. Interfacial Phenomenon Based Biocompatible Alginate-Chitosan Nanoparticles Containing Isoniazid and Pyrazinamide. Pharm. Nanotechnol. 2018, 6, 209–217. DOI: 10.2174/2211738506666180625120038.
  • Silva, M.; Lara, A. S.; Leite, C. Q. F.; Ferreira, E. I. Potential Tuberculostatic Agents: Micelle-Forming Copolymer Poly(Ethylene Glycol)-Poly(Aspartic Acid) Prodrug with Isoniazid. Arch. Pharm. Pharm. Med. Chem. 2001, 334, 189–193. DOI: 10.1002/1521-4184(200106)334:6<189::AID-ARDP189>3.0.CO;2-6.
  • Silva, M.; Ferreira, E. I.; Leite, C. Q.; Sato, D. N. Preparation of Polymeric Micelles for Use as Carriers of Tuberculostatic Drugs. Trop. J. Pharm. Res. 2007, 6, 815–824. DOI: 10.4314/tjpr.v6i4.14665.
  • Pandey, R.; Zahoor, A.; Sharma, S.; Khuller, G. K. Nanoparticle Encapsulated Antitubercular Drugs as a Potential Oral Drug Delivery System against Murine Tuberculosis. Tuberculosis 2003, 83, 373–378. DOI: 10.1016/j.tube.2003.07.001.
  • Pandey, R.; Khuller, G. K. Oral Nanoparticle-Based Antituberculosis Drug Delivery to the Brain in an Experimental Model. J. Antimicrob. Chemother. 2006, 57, 1146–1152. DOI: 10.1093/jac/dkl128.
  • Pandey, R.; Sharma, S.; Khuller, G. K. Oral Poly(Lactide-co-Glycolide) Nanoparticle Based Antituberculosis Drug Delivery: Toxicological and Chemotherapeutic Implications. Indian J. Exp. Biol. 2006, 44, 459–467.
  • Sharma, A.; Sharma, S.; Khuller, G. K. Lectin-Functionalized Poly (Lactide-co-Glycolide) Nanoparticles as Oral/Aerosolized Antitubercular Drug Carriers for Treatment of Tuberculosis. J. Antimicrob. Chemother. 2004, 54, 761–766. DOI: 10.1093/jac/dkh411.
  • Gajendiran, M.; Gopi, V.; Elangovan, V.; Murali, R. V.; Balasubramanian, S. Isoniazid Loaded Core Shell Nanoparticles Derived from PLGA-PEG-PLGA Tri-Block Copolymers: In Vitro and In Vivo Drug Release. Colloids Surf. B Biointerfaces 2013, 104, 107–115. DOI: 10.1016/j.colsurfb.2012.12.008.
  • Amarnath Praphakar, R.; Sam Ebenezer, R.; Vignesh, S.; Shakila, H.; Rajan, M. Versatile pH-Responsive Chitosan-g-Polycaprolactone/Maleic Anhydride-Isoniazid Polymeric Micelle to Improve the Bioavailability of Tuberculosis Multidrugs. ACS Appl. Bio Mater. 2019, 2, 1931–1943. DOI: 10.1021/acsabm.9b00003.
  • Veeren, A.; Bhaw-Luximon, A.; Jhurry, D. Polyvinylpyrrolidone-Polycaprolactone Block Copolymer Micelles as Nanocarriers of Anti-TB Drugs. Eur. Polym. J. 2013, 49, 3034–3045. DOI: 10.1016/j.eurpolymj.2013.06.020.
  • Mukhtar, M.; Pallagi, E.; Csóka, I.; Benke, E.; Farkas, Á.; Zeeshan, M.; Burián, K.; Kókai, D.; Ambrus, R. Aerodynamic Properties and in Silico Deposition of Isoniazid Loaded Chitosan/Thiolated Chitosan and Hyaluronic Acid Hybrid Nanoplex DPIs as a Potential TB Treatment. Int. J. Biol. Macromol. 2020, 165, 3007–3019. DOI: 10.1016/j.ijbiomac.2020.10.192.
  • Zegarra-Urquia, C. L.; Santiago, J.; Bumgardner, J. D.; Vega-Baudrit, J.; Hernández-Escobar, C. A.; Zaragoza-Contreras, E. A. Synthesis of Nanoparticles of the Chitosan-Poly((α,β)-DL-Aspartic Acid) Polyelectrolite Complex as Hydrophilic Drug Carrier. Int. J. Polym. Mater. Polym. Biomater. 2022. DOI: 10.1080/00914037.2022.2029440.
  • Schalley, C. A.; Castellano, R. K.; Brody, M. S.; Rudkevich, D. M.; Siuzdak, G.; Rebek, J. Investigating Molecular Recognition by Mass Spectrometry: Characterization of Calixarene-Based Self-Assembling Capsule Hosts with Charged Guests. J. Am. Chem. Soc. 1999, 121, 4568–4579. DOI: 10.1021/ja990276a.
  • Root, K.; Frey, R.; Hilvert, D.; Zenobi, R. High-Mass MALDI-MS Analysis for the Investigation of Protein Encapsulation within an Engineered Capsid Forming Protein. Helv. Chim. Acta 2017, 100, e1700166. DOI: 10.1002/hlca.201700166.
  • Sakamoto, S.; Yoshizawa, M.; Kusukawa, T.; Fujita, M.; Yamaguchi, K. Characterization of Encapsulating Supramolecules by Using CSI-MS with lonization-Promoting Reagents. Org. Lett. 2001, 3, 1601–1604. DOI: 10.1021/ol010036b.
  • Montaudo, G.; Samperi, F.; Montaudo, M. S. Characterization of Synthetic Polymers by MALDI-MS. Prog. Polym. Sci. 2006, 31, 277–357. DOI: 10.1016/j.progpolymsci.2005.12.001.
  • Wischke, C.; Schwendeman, S. P. Principles of Encapsulating Hydrophobic Drugs in PLA/PLGA Microparticles. Int. J. Pharm. 2008, 364, 298–327. DOI: 10.1016/j.ijpharm.2008.04.042.
  • Jampafuang, Y.; Tongta, A.; Waiprib, Y. Impact of Crystalline Structural Differences between α-and β-Chitosan on Their Nanoparticle Formation via Ionic Gelation and Superoxide Radical Scavenging Activities. Polymers 2019, 11, 2010. DOI: 10.3390/polym11122010.
  • Smirnov, I. P.; Zhu, X.; Taylor, T.; Huang, Y.; Ross, P.; Papayanopoulos, I. A.; Martin, S. A.; Pappin, D. J. Suppression of α-Cyano-4-Hydroxycinnamic Acid Matrix Clusters and Reduction of Chemical Noise in MALDI-TOF Mass Spectrometry. Anal. Chem. 2004, 76, 2958–2965. DOI: 10.1021/ac035331j.
  • Nishikaze, T.; Takayama, M. Disappearance of Interfering Alkali-Metal Adducted Peaks from Matrix-Assisted Laser Desorption/Ionization Mass Spectra of Peptides with Serine Addition to a-Cyano-4-Hydroxycinnamic Acid Matrix. Rapid Commun. Mass Spectrom. 2007, 21, 3345–3351. DOI: 10.1002/rcm.3219.
  • Ellard, G. A.; Gammon, P. T.; Wallace, S. M. The Determination of Isoniazid and Its Metabolites Acetylisoniazid, Monoacetylhydrazine, Diacetylhydrazine, Isonicotinic Acid and Isonicotinylglycine in Serum and Urine. Biochem. J. 1972, 126, 449–458. DOI: 10.1042/bj1260449.
  • Isoniazid. Tuberculosis 2008, 88, 112–116. DOI: 10.1016/S1472-9792(08)70011-8.
  • Hajdu, I.; Bodnár, M.; Filipcsei, G.; Hartmann, J. F.; Daróczi, L.; Zrínyi, M.; Borbély, J. Nanoparticles Prepared by Self-Assembly of Chitosan and Poly-γ-Glutamic Acid. Colloid Polym. Sci. 2008, 286, 343–350. DOI: 10.1007/s00396-007-1785-7.
  • Manier, M. L.; Reyzer, M. L.; Goh, A.; Dartois, V.; Via, L. E.; Barry, C. E.; Caprioli, R. M. Reagent Precoated Targets for Rapid in-Tissue Derivatization of the Anti-Tuberculosis Drug Isoniazid Followed by MALDI Imaging Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2011, 22, 1409–1419. DOI: 10.1007/s13361-011-0150-8.
  • Cheng, Y.; Hercules, D. M. Studies of Pesticides by Collision-Induced Dissociation, Postsource-Decay, Matrix- Assisted Laser Desorption/Ionization Time of Flight Mass. J. Am. Soc. Mass Spectrom. 2001, 12, 590–598. DOI: 10.1016/S1044-0305(01)00230-6.
  • Damnjanović, B.; Petrović, B.; Dimitrić-Marković, J.; Petković, M. Comparison of MALDI-TOF Mass Spectra of [PdCl(Dien)]Cl and [Ru(en)2Cl2]Cl Acquired with Different Matrices. J. Serbian Chem. Soc. 2011, 76, 1687–1701. DOI: 10.2298/JSC110201145D.
  • Daher, A.; Pitta, L.; Santos, T.; Barreira, D.; Pinto, D. Using a Single Tablet Daily to Treat Latent Tuberculosis Infection in Brazil: Bioequivalence of Two Different Isoniazid Formulations (300 mg and 100 mg) Demonstrated by a Sensitive and Rapid High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Mem. Inst. Oswaldo Cruz 2015, 110, 543–550. DOI: 10.1590/0074-02760140458.
  • Janvier Engelbert, A. C.; Gong, A. G.; Assanhou, D. O.; Acheampong, R.; Nammahime Alolga, Y.-O. L. D. African Journal of Pharmacy and Pharmacology Changes in Serum Zinc, Magnesium and Copper in Sickle Cell Patients: A Case Study in Jos, Nigeria. African J. Pharm. Pharmacol. 2014, 8, 1228–1234. DOI: 10.5897/AJPP2014.4197.
  • Santos-Moriano, P.; Fernandez-Arrojo, L.; Mengibar, M.; Belmonte-Reche, E.; Peñalver, P.; Acosta, F. N.; Ballesteros, A. O.; Morales, J. C.; Kidibule, P.; Fernandez-Lobato, M.; Plou, F. J. Enzymatic Production of Fully Deacetylated Chitooligosaccharides and Their Neuroprotective and Anti-Inflammatory Properties. Biocatal. Biotransformation 2018, 36, 57–67. DOI: 10.1080/10242422.2017.1295231.
  • Li, J.; Chen, L.; Meng, Z.; Dou, G. Development of a Mass Spectrometry Method for the Characterization of a Series of Chitosan. Int. J. Biol. Macromol. 2019, 121, 89–96. DOI: 10.1016/j.ijbiomac.2018.09.194.
  • Tudorachi, N.; Chiriac, A. P. TGA/FTIR/MS Study on Thermal Decomposition of Poly(Succinimide) and Sodium Poly(Aspartate). Polym. Test. 2011, 30, 397–407. DOI: 10.1016/j.polymertesting.2011.02.007.
  • Hebda, E.; Pielichowski, J. A. N. Poly (Aspartic Acid) – Based Catalysts for the Oxidation Reactions Zastosowanie Katalizatorów Na Bazie Poli (Kwasu Asparaginowego) W Reakcjach Utleniania. Czas Tech Chem, 2008.
  • Borba, A.; Gómez-Zavaglia, A.; Fausto, R. Molecular Structure, Infrared Spectra, and Photochemistry of Isoniazid under Cryogenic Conditions. J. Phys. Chem. A 2009, 113, 9220–9230. DOI: 10.1021/jp9037914.
  • Pawde, D. M.; Viswanadh, M. K.; Mehata, A. K.; Sonkar, R.; Poddar, S.; Burande, A. S.; Jha, A.; Vajanthri, K. Y.; Mahto, S. K.; Azger Dustakeer, V. N.; et al. Mannose Receptor Targeted Bioadhesive Chitosan Nanoparticles of Clofazimine for Effective Therapy of Tuberculosis. Saudi Pharm. J. 2020, 28, 1616–1625. DOI: 10.1016/j.jsps.2020.10.008.
  • Mukhtar, M.; Fényes, E.; Bartos, C.; Zeeshan, M.; Ambrus, R. Chitosan Biopolymer, Its Derivatives and Potential Applications in Nano-Therapeutics: A Comprehensive Review. Eur. Polym. J. 2021, 160, 110767. DOI: 10.1016/j.eurpolymj.2021.110767.
  • Tan, Z. M.; Lai, G. P.; Pandey, M.; Srichana, T.; Pichika, M. R.; Gorain, B.; Bhattamishra, S. K.; Choudhury, H. Novel Approaches for the Treatment of Pulmonary Tuberculosis. Pharmaceutics 2020, 12, 1154–1196. DOI: 10.3390/pharmaceutics12121196.
  • Goyal, A. K.; Garg, T.; Bhandari, S.; Rath, G. 2017 Advancement in Pulmonary Drug Delivery Systems for Treatment of Tuberculosis. Nanostructures for drug delivery, 669–695. Elsevier Inc.: Amsterdam, Netherlands.
  • Carrillo-Castillo, T. D.; Luna-Velasco, A.; Zaragoza-Contreras, E. A.; Castro-Carmona, J. S. Thermosensitive Hydrogel for In Situ-Controlled Methotrexate Delivery. E-Polymers 2021, 21, 910–920. DOI: 10.1515/epoly-2021-0085.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.