227
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Nanofiber/hydrogel composite scaffold incorporated by silicon nanoparticles for sustained delivery of osteogenic factor: in vitro study

, , , ORCID Icon &
Pages 200-213 | Received 24 Jun 2022, Accepted 09 Nov 2022, Published online: 24 Nov 2022

References

  • Amjadian, S.; Seyedjafari, E.; Zeynali, B.; Shabani, I. The Synergistic Effect of Nano-Hydroxyapatite and Dexamethasone in the Fibrous Delivery System of Gelatin and Poly (l-Lactide) on the Osteogenesis of Mesenchymal Stem Cells. Int. J. Pharm. 2016, 507, 1–11. DOI: 10.1016/j.ijpharm.2016.04.032.
  • Yan, J.; Miao, Y.; Tan, H.; Zhou, T.; Ling, Z.; Chen, Y.; Xing, X.; Hu, X. Injectable Alginate/Hydroxyapatite Gel Scaffold Combined with Gelatin Microspheres for Drug Delivery and Bone Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 63, 274–284. DOI: 10.1016/j.msec.2016.02.071.
  • Li, M.; Gu, Q.; Chen, M.; Zhang, C.; Chen, S.; Zhao, J. Controlled Delivery of Icariin on Small Intestine Submucosa for Bone Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 260–267. DOI: 10.1016/j.msec.2016.10.016.
  • Vo, T. N.; Kasper, F. K.; Mikos, A. G. Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration. Adv. Drug Deliv. Rev. 2012, 64, 1292–1309. DOI: 10.1016/j.addr.2012.01.016.
  • Turner, N. J.; Badylak, S. F. Biologic Scaffolds for Musculotendinous Tissue Repair. Eur. Cell. Mater. 2013, 25, 130–143. DOI: 10.22203/eCM.v025a09.
  • Pacheco, H.; Vedantham, K.; Young, A.; Marriott, I.; El-Ghannam.; A.; Aniket . Tissue Engineering Scaffold for Sequential Release of Vancomycin and rhBMP2 to Treat Bone Infections. J. Biomed. Mater. Res. A 2014, 102, 4213–4223.
  • Kim, H.-W.; Knowles, J. C.; Kim, H.-E. Hydroxyapatite/Poly (ε-Caprolactone) Composite Coatings on Hydroxyapatite Porous Bone Scaffold for Drug Delivery. Biomaterials 2004, 25, 1279–1287. DOI: 10.1016/j.biomaterials.2003.07.003.
  • Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 12, 1227–1249. DOI: 10.2147/IJN.S121956.
  • Kajdič, S.; Planinšek, O.; Gašperlin, M.; Kocbek, P. Electrospun Nanofibers for Customized Drug-Delivery Systems. J. Drug Delivery Sci. Technol. 2019, 51, 672–681. DOI: 10.1016/j.jddst.2019.03.038.
  • Cheng, G.; Yin, C.; Tu, H.; Jiang, S.; Wang, Q.; Zhou, X.; Xing, X.; Xie, C.; Shi, X.; Du, Y.; et al. Controlled Co-Delivery of Growth Factors through the Layer-by-Layer Assembly of Core–Shell Nanofibers for Improving Bone Regeneration. ACS Nano. 2019, 13, 6372–6382. DOI: 10.1021/acsnano.8b06032.
  • Wang, L.; Wan, M.; Li, Z.; Zhong, N.; Liang, D.; Ge, L. A Comparative Study of the Effects of Concentrated Growth Factors in Two Different Forms on Osteogenesis In Vitro. Mol. Med. Rep. 2019, 20, 1039–1048.
  • Meyer, U.; Wiesmann, H. P. Bone and Cartilage Engineering, Springer Science & Business Media: Berlin, 2006.
  • Rezk, A. I.; Kim, K.-S.; Kim, C. S. Poly (ε-Caprolactone)/Poly (Glycerol Sebacate) Composite Nanofibers Incorporating Hydroxyapatite Nanoparticles and Simvastatin for Bone Tissue Regeneration and Drug Delivery Applications. Polymers 2020, 12, 2667. DOI: 10.3390/polym12112667.
  • Imani, R.; Yousefzadeh, M.; Nour, S. Functional Nanofiber for Drug Delivery Applications. In Handbook of Nanofibers; Barhoum, A., Bechelany, M., Makhlouf, A., Eds.; Springer: Cham; 2018; pp. 1–55.
  • Wang, Y.; Cui, W.; Zhao, X.; Wen, S.; Sun, Y.; Han, J.; Zhang, H. Bone Remodeling-Inspired Dual Delivery Electrospun Nanofibers for Promoting Bone Regeneration. Nanoscale. 2018, 11, 60–71.
  • Posadowska, U.; Brzychczy-Włoch, M.; Pamuła, E. Gentamicin Loaded PLGA Nanoparticles as Local Drug Delivery System for the Osteomyelitis Treatment. Acta Bioeng. Biomech. 2015, 17, 41–48.
  • Tozzi, G.; De Mori, A.; Oliveira, A.; Roldo, M. Composite Hydrogels for Bone Regeneration. Materials. 2016, 9, 267. DOI: 10.3390/ma9040267.
  • Oustadi, F.; Imani, R.; Haghbin Nazarpak, M.; Sharifi, A. M. Genipin‐Crosslinked Gelatin Hydrogel Incorporated with PLLA‐Nanocylinders as a Bone Scaffold: Synthesis, Characterization, and Mechanical Properties Evaluation. Polym. Adv. Technol. 2020, 31, 1783–1792. DOI: 10.1002/pat.4905.
  • Tang, F.; Li, L.; Chen, D. Mesoporous Silica Nanoparticles: synthesis, Biocompatibility and Drug Delivery. Adv. Mater. 2012, 24, 1504–1534. DOI: 10.1002/adma.201104763.
  • Sarparanta, M. P.; Bimbo, L. M.; Mäkilä, E. M.; Salonen, J. J.; Laaksonen, P. H.; Helariutta, A. M. K.; Linder, M. B.; Hirvonen, J. T.; Laaksonen, T. J.; Santos, H. A.; et al. The Mucoadhesive and Gastroretentive Properties of Hydrophobin-Coated Porous Silicon Nanoparticle Oral Drug Delivery Systems. Biomaterials. 2012, 33, 3353–3362. DOI: 10.1016/j.biomaterials.2012.01.029.
  • Zhang, D.-X.; Esser, L.; Vasani, R. B.; Thissen, H.; Voelcker, N. H. Porous Silicon Nanomaterials: recent Advances in Surface Engineering for Controlled Drug-Delivery Applications. Nanomedicine. 2019, 14, 3213–3230. DOI: 10.2217/nnm-2019-0167.
  • Yuan, Z.; Pan, Y.; Cheng, R.; Sheng, L.; Wu, W.; Pan, G.; Feng, Q.; Cui, W. Doxorubicin-Loaded Mesoporous Silica Nanoparticle Composite Nanofibers for Long-Term Adjustments of Tumor Apoptosis. Nanotechnology. 2016, 27, 245101. DOI: 10.1088/0957-4484/27/24/245101.
  • Kim, T.-H.; Singh, R. K.; Kang, M. S.; Kim, J.-H.; Kim, H.-W. Gene Delivery Nanocarriers of Bioactive Glass with Unique Potential to Load BMP2 Plasmid DNA and to Internalize into Mesenchymal Stem Cells for Osteogenesis and Bone Regeneration. Nanoscale 2016, 8, 8300–8311. DOI: 10.1039/C5NR07933K.
  • Ren, X.; Han, Y.; Wang, J.; Jiang, Y.; Yi, Z.; Xu, H.; Ke, Q. An Aligned Porous Electrospun Fibrous Membrane with Controlled Drug Delivery–an Efficient Strategy to Accelerate Diabetic Wound Healing with Improved Angiogenesis. Acta Biomater. 2018, 70, 140–153. DOI: 10.1016/j.actbio.2018.02.010.
  • Dashnyam, K.; Jin, G.-Z.; Kim, J.-H.; Perez, R.; Jang, J.-H.; Kim, H.-W. Promoting Angiogenesis with Mesoporous Microcarriers through a Synergistic Action of Delivered Silicon Ion and VEGF. Biomaterials. 2017, 116, 145–157. DOI: 10.1016/j.biomaterials.2016.11.053.
  • Hoppe, A.; Güldal, N. S.; Boccaccini, A. R. A Review of the Biological Response to Ionic Dissolution Products from Bioactive Glasses and Glass-Ceramics. Biomaterials. 2011, 32, 2757–2774. DOI: 10.1016/j.biomaterials.2011.01.004.
  • Li, H.; Xue, K.; Kong, N.; Liu, K.; Chang, J. Silicate Bioceramics Enhanced Vascularization and Osteogenesis through Stimulating Interactions between Endothelia Cells and Bone Marrow Stromal Cells. Biomaterials. 2014, 35, 3803–3818. DOI: 10.1016/j.biomaterials.2014.01.039.
  • Dashnyam, K.; El-Fiqi, A.; Buitrago, J. O.; Perez, R. A.; Knowles, J. C.; Kim, H.-W. A Mini Review Focused on the Proangiogenic Role of Silicate Ions Released from Silicon-Containing Biomaterials. J. Tissue Eng. 2017, 8, 2041731417707339.
  • Cui, W.; Liu, Q.; Yang, L.; Wang, K.; Sun, T.; Ji, Y.; Liu, L.; Yu, W.; Qu, Y.; Wang, J.; et al. Sustained Delivery of BMP-2-Related Peptide from the True Bone Ceramics/Hollow Mesoporous Silica Nanoparticles Scaffold for Bone Tissue Regeneration. ACS Biomater. Sci. Eng. 2018, 4, 211–221. DOI: 10.1021/acsbiomaterials.7b00506.
  • Liu, J.; Cui, Y.; Kuang, Y.; Xu, S.; Lu, Q.; Diao, J.; Zhao, N. Hierarchically Porous Calcium–Silicon Nanosphere-Enabled co-Delivery of microRNA-210 and Simvastatin for Bone Regeneration. J. Mater. Chem. B. 2021, 9, 3573–3583. DOI: 10.1039/D1TB00063B.
  • Nyan, M.; Sato, D.; Oda, M.; Machida, T.; Kobayashi, H.; Nakamura, T.; Kasugai, S. Bone Formation with the Combination of Simvastatin and Calcium Sulfate in Critical-Sized Rat Calvarial Defect. J. Pharmacol. Sci. 2007, 104, 384–386. DOI: 10.1254/jphs.SC0070184.
  • Moriyama, Y.; Ayukawa, Y.; Ogino, Y.; Atsuta, I.; Koyano, K. Topical Application of Statin Affects Bone Healing around Implants. Clin. Oral Implants Res. 2008, 19, 600–605. DOI: 10.1111/j.1600-0501.2007.01508.x.
  • Monjo, M.; Rubert, M.; Ellingsen, J. E.; Lyngstadaas, S. P. Rosuvastatin Promotes Osteoblast Differentiation and Regulates SLCO1A1 Transporter Gene Expression in MC3T3-E1 Cells. Cell. Physiol. Biochem. 2010, 26, 647–656. DOI: 10.1159/000322332.
  • Olsson, G. O. Safety and Efficacy of Rosuvastatin. The Lancet. 2004, 364, 135. DOI: 10.1016/S0140-6736(04)16616-6.
  • Sakamoto, K.; Mikami, H.; Kimura, J. Involvement of Organic Anion Transporting Polypeptides in the Toxicity of Hydrophilic Pravastatin and Lipophilic Fluvastatin in Rat Skeletal Myofibres. Br. J. Pharmacol. 2008, 154, 1482–1490. DOI: 10.1038/bjp.2008.192.
  • Lee, Y.; Schmid, M. J.; Marx, D. B.; Beatty, M. W.; Cullen, D. M.; Collins, M. E.; Reinhardt, R. A. The Effect of Local Simvastatin Delivery Strategies on Mandibular Bone Formation in Vivo. Biomaterials. 2008, 29, 1940–1949. DOI: 10.1016/j.biomaterials.2007.12.045.
  • Türer, A.; Durmuşlar, M. C.; Şener, I.; Misir, A. F.; Önger, M. E. The Effect of Local Rosuvastatin on Mandibular Fracture Healing. J. Craniofac. Surg. 2016, 27, e758–e761. DOI: 10.1097/SCS.0000000000003120.
  • Ibrahim, H. K.; Fahmy, R. H. Localized Rosuvastatin via Implantable Bioerodible Sponge and Its Potential Role in Augmenting Bone Healing and Regeneration. Drug Deliv. 2016, 23, 3181–3192. DOI: 10.3109/10717544.2016.1160458.
  • Gutierrez, G. E.; Lalka, D.; Garrett, I. R.; Rossini, G.; Mundy, G. R. Transdermal Application of Lovastatin to Rats Causes Profound Increases in Bone Formation and Plasma Concentrations. Osteoporos. Int. 2006, 17, 1033–1042. DOI: 10.1007/s00198-006-0079-0.
  • Akbari, V.; Rezazadeh, M.; Ebrahimi, Z. Comparison the Effects of Chitosan and Hyaluronic Acid-Based Thermally Sensitive Hydrogels Containing Rosuvastatin on Human Osteoblast-like MG-63 Cells. Res. Pharm. Sci. 2020, 15, 97–106.
  • McInnes, S. J. P.; Turner, C. T.; Al-Bataineh, S. A.; Airaghi Leccardi, M. J. I.; Irani, Y.; Williams, K. A.; Cowin, A. J.; Voelcker, N. H. Surface Engineering of Porous Silicon to Optimise Therapeutic Antibody Loading and Release. J. Mater. Chem. B. 2015, 3, 4123–4133. DOI: 10.1039/C5TB00397K.
  • Ganesh, N.; Jayakumar, R.; Koyakutty, M.; Mony, U.; Nair, S. V. Embedded Silica Nanoparticles in Poly (Caprolactone) Nanofibrous Scaffolds Enhanced Osteogenic Potential for Bone Tissue Engineering. Tissue Eng. Part A 2012, 18, 1867–1881. DOI: 10.1089/ten.tea.2012.0167.
  • Mohabatpour, F.; Karkhaneh, A.; Sharifi, A. M. A Hydrogel/Fiber Composite Scaffold for Chondrocyte Encapsulation in Cartilage Tissue Regeneration. RSC Adv. 2016, 6, 83135–83145. DOI: 10.1039/C6RA15592H.
  • Kim, T. G.; Park, T. G. Biodegradable Polymer Nanocylinders Fabricated by Transverse Fragmentation of Electrospun Nanofibers through Aminolysis. Macromol. Rapid Commun. 2008, 29, 1231–1236. DOI: 10.1002/marc.200800094.
  • Lien, S.-M.; Li, W.-T.; Huang, T.-J. Genipin-Crosslinked Gelatin Scaffolds for Articular Cartilage Tissue Engineering with a Novel Crosslinking Method. Mater. Sci. Eng. C. 2008, 28, 36–43. DOI: 10.1016/j.msec.2006.12.015.
  • De Clercq, K.; Schelfhout, C.; Bracke, M.; De Wever, O.; Van Bockstal, M.; Ceelen, W.; Remon, J. P.; Vervaet, C. Genipin-Crosslinked Gelatin Microspheres as a Strategy to Prevent Postsurgical Peritoneal Adhesions: In Vitro and In Vivo Characterization. Biomaterials 2016, 96, 33–46. DOI: 10.1016/j.biomaterials.2016.04.012.
  • Augustine, R.; Dan, P.; Sosnik, A.; Kalarikkal, N.; Tran, N.; Vincent, B.; Thomas, S.; Menu, P.; Rouxel, D. Electrospun Poly (Vinylidene Fluoride-Trifluoroethylene)/Zinc Oxide Nanocomposite Tissue Engineering Scaffolds with Enhanced Cell Adhesion and Blood Vessel Formation. Nano Res. 2017, 10, 3358–3376. DOI: 10.1007/s12274-017-1549-8.
  • Liuyun, J.; Yubao, L.; Chengdong, X. Preparation and Biological Properties of a Novel Composite Scaffold of Nano-Hydroxyapatite/Chitosan/Carboxymethyl Cellulose for Bone Tissue Engineering. J. Biomed. Sci. 2009, 16, 65. DOI: 10.1186/1423-0127-16-65.
  • D’Souza, S. A Review of in Vitro Drug Release Test Methods for Nano-Sized Dosage Forms. Adv. Pharm. 2014, 2014, 1–12.
  • Pavaloiu, R.-D.; Stoica-Guzun, A.; Stroescu, M.; Jinga, S. I.; Dobre, T. Composite Films of Poly (Vinyl Alcohol)–Chitosan–Bacterial Cellulose for Drug Controlled Release. Int. J. Biol. Macromol. 2014, 68, 117–124. DOI: 10.1016/j.ijbiomac.2014.04.040.
  • Saidi, M.; Dabbaghi, A.; Rahmani, S. Swelling and Drug Delivery Kinetics of Click-Synthesized Hydrogels Based on Various Combinations of PEG and Star-Shaped PCL: Influence of Network Parameters on Swelling and Release Behavior. Polym. Bull. 2020, 77, 3989–4010. DOI: 10.1007/s00289-019-02948-z.
  • Kai, D.; Prabhakaran, M. P.; Stahl, B.; Eblenkamp, M.; Wintermantel, E.; Ramakrishna, S. Mechanical Properties and in Vitro Behavior of Nanofiber–Hydrogel Composites for Tissue Engineering Applications. Nanotechnology. 2012, 23, 095705. DOI: 10.1088/0957-4484/23/9/095705.
  • Yao, C.-H.; Liu, B.-S.; Chang, C.-J.; Hsu, S.-H.; Chen, Y.-S. Preparation of Networks of Gelatin and Genipin as Degradable Biomaterials. Mater. Chem. Phys. 2004, 83, 204–208. DOI: 10.1016/j.matchemphys.2003.08.027.
  • Stevens, M. M.; Qanadilo, H. F.; Langer, R.; Prasad Shastri, V. A Rapid-Curing Alginate Gel System: utility in Periosteum-Derived Cartilage Tissue Engineering. Biomaterials. 2004, 25, 887–894. DOI: 10.1016/j.biomaterials.2003.07.002.
  • Sadeghi-Ataabadi, M.; Mostafavi-Pour, Z.; Vojdani, Z.; Sani, M.; Latifi, M.; Talaei-Khozani, T. Fabrication and Characterization of Platelet-Rich Plasma Scaffolds for Tissue Engineering Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 372–380. DOI: 10.1016/j.msec.2016.10.001.
  • Kao, C.-T.; Chiu, Y.-C.; Lee, A. K.-X.; Lin, Y.-H.; Huang, T.-H.; Liu, Y.-C.; Shie, M.-Y. The Synergistic Effects of Xu Duan Combined Sr-Contained Calcium Silicate/Poly-ε-Caprolactone Scaffolds for the Promotion of Osteogenesis Marker Expression and the Induction of Bone Regeneration in Osteoporosis. Materials Science and Engineering: C. 2021, 119, 111629. DOI: 10.1016/j.msec.2020.111629.
  • Whittaker, J. L.; Dutta, N. K.; Zannettino, A.; Choudhury, N. R. Engineering DN Hydrogels from Regenerated Silk Fibroin and Poly (N-Vinylcaprolactam). J. Mater. Chem. B 2016, 4, 5519–5533. DOI: 10.1039/C6TB01055E.
  • Chang, D.; Gao, Y.; Wang, L.; Liu, G.; Chen, Y.; Wang, T.; Tao, W.; Mei, L.; Huang, L.; Zeng, X.; et al. Polydopamine-Based Surface Modification of Mesoporous Silica Nanoparticles as pH-Sensitive Drug Delivery Vehicles for Cancer Therapy. J. Colloid Interface Sci. 2016, 463, 279–287. DOI: 10.1016/j.jcis.2015.11.001.
  • Qu, B.; Zhang, M.; Lei, D.; Zeng, Y.; Chen, Y.; Chen, L.; Li, Q.; Wang, Y.; Wang, T. Facile Solvothermal Synthesis of Mesoporous Cu2SnS3 Spheres and Their Application in Lithium-Ion Batteries. Nanoscale. 2011, 3, 3646–3651. DOI: 10.1039/c1nr10401b.
  • Rajput, P.; Gauniya, A. Preformulation Studies of Rosuvastatin. J. Drug Deliv. Ther. 2019, 9, 729–735.
  • Qiu, K.; He, C.; Feng, W.; Wang, W.; Zhou, X.; Yin, Z.; Chen, L.; Wang, H.; Mo, X. Doxorubicin-Loaded Electrospun Poly (L-Lactic Acid)/Mesoporous Silica Nanoparticles Composite Nanofibers for Potential Postsurgical Cancer Treatment. J. Mater. Chem. B. 2013, 1, 4601–4611. DOI: 10.1039/c3tb20636j.
  • Porgham Daryasari, M.; Dusti Telgerd, M.; Hossein Karami, M.; Zandi-Karimi, A.; Akbarijavar, H.; Khoobi, M.; Seyedjafari, E.; Birhanu, G.; Khosravian, P.; SadatMahdavi, F.; et al. Poly-l-Lactic Acid Scaffold Incorporated Chitosan-Coated Mesoporous Silica Nanoparticles as pH-Sensitive Composite for Enhanced Osteogenic Differentiation of Human Adipose Tissue Stem Cells by Dexamethasone Delivery. Artif. Cells. Nanomed. Biotechnol. 2019, 47, 4020–4029. DOI: 10.1080/21691401.2019.1658594.
  • Li, K.; Sun, H.; Sui, H.; Zhang, Y.; Liang, H.; Wu, X.; Zhao, Q. Composite Mesoporous Silica Nanoparticle/Chitosan Nanofibers for Bone Tissue Engineering. RSC Adv. 2015, 5, 17541–17549. DOI: 10.1039/C4RA15232H.
  • Song, Y.; Nagai, N.; Saijo, S.; Kaji, H.; Nishizawa, M.; Abe, T. In Situ Formation of Injectable Chitosan-Gelatin Hydrogels through Double Crosslinking for Sustained Intraocular Drug Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 88, 1–12. DOI: 10.1016/j.msec.2018.02.022.
  • Oryan, A.; Kamali, A.; Moshiri, A. Potential Mechanisms and Applications of Statins on Osteogenesis: Current Modalities, Conflicts and Future Directions. J. Control. Release. 2015, 215, 12–24. DOI: 10.1016/j.jconrel.2015.07.022.
  • Cao, L.; Zhang, H.; Cao, C.; Zhang, J.; Li, F.; Huang, Q. Quaternized Chitosan-Capped Mesoporous Silica Nanoparticles as Nanocarriers for Controlled Pesticide Release. Nanomaterials. 2016, 6, 126. DOI: 10.3390/nano6070126.
  • Meng, H.; Xue, M.; Xia, T.; Zhao, Y.-L.; Tamanoi, F.; Stoddart, J. F.; Zink, J. I.; Nel, A. E. Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. J. Am. Chem. Soc. 2010, 132, 12690–12697. DOI: 10.1021/ja104501a.
  • Tan, W.; Gao, C.; Feng, P.; Liu, Q.; Liu, C.; Wang, Z.; Deng, Y.; Shuai, C. Dual-Functional Scaffolds of Poly (L-Lactic Acid)/Nanohydroxyapatite Encapsulated with Metformin: Simultaneous Enhancement of Bone Repair and Bone Tumor Inhibition. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111592. DOI: 10.1016/j.msec.2020.111592.
  • Hu, Y.; Zou, S.; Chen, W.; Tong, Z.; Wang, C. Mineralization and Drug Release of Hydroxyapatite/Poly (l-Lactic Acid) Nanocomposite Scaffolds Prepared by Pickering Emulsion Templating. Colloids Surf. B Biointerfaces. 2014, 122, 559–565. DOI: 10.1016/j.colsurfb.2014.07.032.
  • Dash, S.; Murthy, P. N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Pol. Pharm. 2010, 67, 217–223.
  • Ji, L.; Qiao, W.; Zhang, Y.; Wu, H.; Miao, S.; Cheng, Z.; Gong, Q.; Liang, J.; Zhu, A. A Gelatin Composite Scaffold Strengthened by Drug-Loaded Halloysite Nanotubes. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 362–369. DOI: 10.1016/j.msec.2017.04.070.
  • Takić Miladinov, D.; Tomić, S.; Stojanović, S.; Najdanović, J.; Filipović, J.; Trajanović, M.; Najman, S. Synthesis, Swelling Properties and Evaluation of Genotoxicity of Hydrogels Based on (Meth) Acrylates and Itaconic Acid. Mat. Res. 2016, 19, 1070–1079. DOI: 10.1590/1980-5373-MR-2016-0222.
  • Patel, M.; Koh, W.-G. Composite Hydrogel of Methacrylated Hyaluronic Acid and Fragmented Polycaprolactone Nanofiber for Osteogenic Differentiation of Adipose-Derived Stem Cells. Pharmaceutics. 2020, 12, 902. DOI: 10.3390/pharmaceutics12090902.
  • Monjo, M.; Rubert, M.; Wohlfahrt, J. C.; Rønold, H. J.; Ellingsen, J. E.; Lyngstadaas, S. P. In Vivo Performance of Absorbable Collagen Sponges with Rosuvastatin in Critical-Size Cortical Bone Defects. Acta Biomater. 2010, 6, 1405–1412. DOI: 10.1016/j.actbio.2009.09.027.
  • Mao, L.; Xia, L.; Chang, J.; Liu, J.; Jiang, L.; Wu, C.; Fang, B. The Synergistic Effects of Sr and Si Bioactive Ions on Osteogenesis, Osteoclastogenesis and Angiogenesis for Osteoporotic Bone Regeneration. Acta Biomater. 2017, 61, 217–232. DOI: 10.1016/j.actbio.2017.08.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.