115
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Strontium-doped mesoporous bioactive glass microspheres developed for drug delivering and enhancing the bioactivity of polylactic acid scaffolds

, , , , & ORCID Icon
Pages 279-291 | Received 27 Jul 2022, Accepted 22 Dec 2022, Published online: 02 Jan 2023

References

  • Gong, T.; Xie, J.; Liao, J.; Zhang, T.; Lin, S.; Lin, Y.,. Nanomaterials and Bone Regeneration. Bone Res. 2015, 3, 15029. DOI: 10.1038/boneres.2015.29.
  • Paim, Á.; Tessaro, I. C.; Cardozo, N. S. M.; Pranke, P.,. Mesenchymal Stem Cell Cultivation in Electrospun Scaffolds: mechanistic Modeling for Tissue Engineering. J. Biol. Phys. 2018, 44, 245–271. DOI: 10.1007/s10867-018-9482-y.
  • He, Y.; Zhu, T.; Liu, L.; Shi, X.; Lin, Z.,. Modifying Collagen with Alendronate Sodium for Bone Regeneration Applications. RSC Adv. 2018, 8, 16762–16772. DOI: 10.1039/C8RA01872C.
  • Huang, K.; Wu, J.; Gu, Z. Black Phosphorus Hydrogel Scaffolds Enhance Bone Regeneration via a Sustained Supply of Calcium-Free Phosphorus. ACS Appl. Mater. Interfaces. 2019, 11, 2908–2916. DOI: 10.1021/acsami.8b21179.
  • Farokhi, M.; Mottaghitalab, F.; Samani, S.; Shokrgozar, M. A.; Kundu, S. C.; Reis, R. L.; Fatahi, Y.; Kaplan, D. L.,. Silk Fibroin/Hydroxyapatite Composites for Bone Tissue Engineering. Biotechnol. Adv. 2018, 36, 68–91. DOI: 10.1016/j.biotechadv.2017.10.001.
  • Kaur, G.; Pandey, O. P.; Singh, K.; Homa, D.; Scott, B.; Pickrell, G. A Review of Bioactive Glasses: Their Structure, Properties, Fabrication and Apatite Formation. J. Biomed. Mater. Res. A 2014, 102, 254–274. DOI: 10.1002/jbm.a.34690.
  • Zhang, W.; Shen, Y.; Pan, H.; Lin, K.; Liu, X.; Darvell, B. W.; Lu, W. W.; Chang, J.; Deng, L.; Wang, D.; et al. Effects of Strontium in Modified Biomaterials. Acta Biomater. 2011, 7, 800–808. DOI: 10.1016/j.actbio.2010.08.031.
  • Mao, C.; Xiang, Y.; Liu, X.; Cui, Z.; Yang, X.; Yeung, K. W. K.; Pan, H.; Wang, X.; Chu, P. K.; Wu, S.; et al. Photo-Inspired Antibacterial Activity and Wound Healing Acceleration by Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures. ACS Nano. 2017, 11, 9010–9021. DOI: 10.1021/acsnano.7b03513.
  • Xiao, J.; Zhu, Y.; Huddleston, S.; Li, P.; Xiao, B.; Farha, O. K.; Ameer, G. A.,. Copper Metal-Organic Framework Nanoparticles Stabilized with Folic Acid Improve Wound Healing in Diabetes. ACS Nano 2018, 12, 1023–1032. DOI: 10.1021/acsnano.7b01850.
  • Wu, C.; Chang, J. Multifunctional Mesoporous Bioactive Glasses for Effective Delivery of Therapeutic Ions and Drug/Growth Factors. J. Control Release 2014, 193, 282–295. DOI: 10.1016/j.jconrel.2014.04.026.
  • Baino, F.; Fiume, E.; Barberi, J.; Kargozar, S.; Marchi, J.; Massera, J.; Verné, E.,. Processing Methods for Making Porous Bioactive Glass-Based Scaffolds: A State of the Art Review. Int. J. Appl. Ceram. Technol. 2019, 16, 1762–1796. DOI: 10.1111/ijac.13195.
  • Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B.,. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318, 426–430. DOI: 10.1126/science.1147241.
  • Wang, Z.; Jia, Z.; Jiang, Y.; Li, P.; Han, L.; Lu, X.; Ren, F.; Wang, K.; Yuan, H.,. Mussel-Inspired Nano-Building Block Assemblies for Mimicking Extracellular Matrix Microenvironments with Multiple Functions. Biofabrication 2017, 9, 035005. DOI: 10.1088/1758-5090/aa7fdc.
  • Ma, H.; Luo, J.; Sun, Z.; Xia, L.; Shi, M.; Liu, M.; Chang, J.; Wu, C.,. 3D Printing of Biomaterials with Mussel-Inspired Nanostructures for Tumor Therapy and Tissue Regeneration. Biomaterials 2016, 111, 138–148. DOI: 10.1016/j.biomaterials.2016.10.005.
  • Li, J.; Li, L.; Zhou, J.; Zhou, Z.; Wu, X-l.; Wang, L.; Yao, Q.,. 3D Printed Dual-Functional Biomaterial with Self-Assembly Micro-Nano Surface and Enriched Nano Argentum for Antibacterial and Bone Regeneration. Appl. Mater. Today 2019, 17, 206–215. DOI: 10.1016/j.apmt.2019.06.012.
  • Jiang, Y.; Pan, X.; Yao, M.; Han, L.; Zhang, X.; Jia, Z.; Weng, J.; Chen, W.; Fang, L.; Wang, X.; et al. Bioinspired Adhesive and Tumor Microenvironment Responsive nanoMOFs Assembled 3D-Printed Scaffold for anti-Tumor Therapy and Bone Regeneration. Nano Today 2021, 39, 101182. DOI: 10.1016/j.nantod.2021.101182.
  • Liu, Y.; Ai, K.; Lu, L. Polydopamine and Its Derivative Materials: synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014, 114, 5057–5115. DOI: 10.1021/cr400407a.
  • Hong, S.; Na, Y. S.; Choi, S.; Song, I. T.; Kim, W. Y.; Lee, H.,. Non-Covalent Self-Assembly and Covalent Polymerization co-Contribute to Polydopamine Formation. Adv. Funct. Mater 2012, 22, 4711–4717. DOI: 10.1002/adfm.201201156.
  • da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A.,. Biocompatibility, Biodegradation and Excretion of Polylactic Acid (PLA) in Medical Implants and Theranostic Systems. Chem Eng J 2018, 340, 9–14. DOI: 10.1016/j.cej.2018.01.010.
  • Bagheri Saed, A.; Behravesh, A. H.; Hasannia, S.; Akhoundi, B.; Hedayati, S. K.; Gashtasbi, F.,. An in Vitro Study on the Key Features of Poly L-Lactic Acid/Biphasic Calcium Phosphate Scaffolds Fabricated via DLP 3D Printing for Bone Grafting. Eur. Polym. J. 2020, 141, 110057. DOI: 10.1016/j.eurpolymj.2020.110057.
  • Guo, R.; Chen, S.; Xiao, X. Fabrication and Characterization of Poly (Ethylenimine) Modified Poly (l-Lactic Acid) Nanofibrous Scaffolds. J. Biomater. Sci. Polym. Ed. 2019, 30, 1523–1541. DOI: 10.1080/09205063.2019.1648015.
  • Fiorilli, S.; Molino, G.; Pontremoli, C.; Iviglia, G.; Torre, E.; Cassinelli, C.; Morra, M.; Vitale-Brovarone, C. The Incorporation of Strontium to Improve Bone-Regeneration Ability of Mesoporous Bioactive Glasses. Materials 2018, 11, 678. DOI: 10.3390/ma11050678.
  • Ge, Y.-W.; Lu, J.-W.; Sun, Z.-Y.; Liu, Z.-Q.; Zhou, J.; Ke, Q.-F.; Mao, Y.-Q.; Guo, Y.-P.; Zhu, Z.-A. Ursolic Acid Loaded-Mesoporous Bioglass/Chitosan Porous Scaffolds as Drug Delivery System for Bone Regeneration. Nanomedicine 2019, 18, 336–346. DOI: 10.1016/j.nano.2018.10.010.
  • Phetnin, R.; Rattanachan, S. T. Preparation and Antibacterial Property on Silver Incorporated Mesoporous Bioactive Glass Microspheres. J. Sol-Gel Sci. Technol. 2015, 75, 279–290. DOI: 10.1007/s10971-015-3697-1.
  • Du, X.; Wei, D.; Huang, L.; Zhu, M.; Zhang, Y.; Zhu, Y. 3D Printing of Mesoporous Bioactive Glass/Silk Fibroin Composite Scaffolds for Bone Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109731. DOI: 10.1016/j.msec.2019.05.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.