80
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The initial application of conch-shell hydroxyapatite and HACC as functional filler in PMMA bone cement

, , , , &
Pages 1044-1053 | Received 31 May 2023, Accepted 28 Jul 2023, Published online: 06 Aug 2023

References

  • Cai, P.; Lu, S.; Yu, J.; Xiao, L.; Wang, J.; Liang, H.; Huang, L.; Han, G.; Bian, M.; Zhang, S.; et al. Injectable Nanofiber-Reinforced Bone Cement with Controlled Biodegradability for Minimally-Invasive Bone Regeneration. Bioact. Mater. 2023, 21, 267–283. DOI: 10.1016/j.bioactmat.2022.08.009.
  • Rong, Z.; Zeng, W.; Kuang, Y.; Zhang, J.; Liu, X.; Lu, Y.; Cheng, X. Enhanced Bioactivity of Osteoblast-like Cells on Poly(Lactic Acid)/Poly(Methyl Methacrylate)/Nano-Hydroxyapatite Scaffolds for Bone Tissue Engineering. Fibers Polym. 2015, 16, 245–253. DOI: 10.1007/s12221-015-0245-0.
  • Singh, G.; Santhanakrishnan, S. Fabrication and Characterization of Composite PMMA/HA Scaffold Using Freeze Casting Method. Mater. Technol. 2022, 37, 1734–1741. DOI: 10.1080/10667857.2021.1978640.
  • Kang, I. G.; Park, C. I.; Lee, H.; et al. Hydroxyapatite Microspheres as an Additive to Enhance Radiopacity, Biocompatibility, and Osteoconductivity of Poly(Methyl Methacrylate) Bone Cement. Materials 2018, 11, 258. DOI: 10.3390/ma11020258.
  • Wang, M.; Feng, X.; Wang, T.; Gao, Y.; Wang, Y.; Sa, Y.; Jiang, T. Synthesis and Characterization of an Injectable and Self-Curing Poly(Methyl Methacrylate) Cement Functionalized with a Biomimetic Chitosan–Poly(Vinyl Alcohol)/Nano-Sized Hydroxyapatite/Silver Hydrogel. RSC Adv. 2016, 6, 60609–60619. DOI: 10.1039/C6RA08182G.
  • Che, Y.; Min, S.; Wang, M.; Rao, M.; Quan, C. Biological Activity of Hydroxyapatite/Poly(Methylmethacrylate) Bone Cement with Different Surface Morphologies and Modifications for Induced Osteogenesis. J. Appl. Polym. Sci. 2019, 136, 48188. DOI: 10.1002/app.48188.
  • Wang, M.; Sa, Y.; Li, P.; Guo, Y.; Du, Y.; Deng, H.; Jiang, T.; Wang, Y. A Versatile and Injectable Poly(Methyl Methacrylate) Cement Functionalized with Quaternized Chitosan-Glycerophosphate/Nanosized Hydroxyapatite Hydrogels. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 264–272. DOI: 10.1016/j.msec.2018.04.075.
  • Mohd Pu’ad, N. A. S.; Koshy, P.; Abdullah, H. Z.; Idris, M. I.; Lee, T. C. Syntheses of Hydroxyapatite from Natural Sources. Heliyon 2019, 5, e01588. DOI: 10.1016/j.heliyon.2019.e01588.
  • Hussain, S.; Sabiruddin, K. Effect of Heat Treatment on the Synthesis of Hydroxyapatite from Indian Clam Seashell by Hydrothermal Method. Ceram. Int. 2021, 47, 29660–29669. DOI: 10.1016/j.ceramint.2021.07.137.
  • Li, Q.; Wen, Z.; Chen, J.; Huang, H.; Shi, X.; Zhang, Q. Preparation of Controllable Hydroxyapaptite Nanoparticles with Abalone Shells. Mater. Lett. 2019, 236, 562–565. DOI: 10.1016/j.matlet.2018.11.021.
  • Huang, H.; Du, M.; Chen, J.; Zhong, S.; Wang, J. Preparation and Characterization of Abalone Shells Derived Biological Mesoporous Hydroxyapatite Microspheres for Drug Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 113, 110969. DOI: 10.1016/j.msec.2020.110969.
  • Zuliantoni, Z.; Suprapto, W.; Setyarini, P. H.; Gapsari, F. Extraction and Characterization of Snail Shell Waste Hydroxyapatite. Results Eng. 2022, 14, 100390. DOI: 10.1016/j.rineng.2022.100390.
  • Bee, S. L.; Hamid, Z. A. A. Hydroxyapatite Derived from Food Industry Bio-Wastes: Syntheses, Properties and Its Potential Multifunctional Applications. Ceram. Int. 2020, 46, 17149–17175. DOI: 10.1016/j.ceramint.2020.04.103.
  • Yang, Y.; Chu, L.; Yang, S.; Zhang, H.; Qin, L.; Guillaume, O.; Eglin, D.; Richards, R. G.; Tang, T. Dual-Functional 3D-Printed Composite Scaffold for Inhibiting Bacterial Infection and Promoting Bone Regeneration in Infected Bone Defect Models. Acta Biomater. 2018, 79, 265–275. DOI: 10.1016/j.actbio.2018.08.015.
  • Ao, H.; Yang, S.; Nie, B.; Fan, Q.; Zhang, Q.; Zong, J.; Guo, S.; Zheng, X.; Tang, T. Improved Antibacterial Properties of Collagen I/Hyaluronic Acid/Quaternized Chitosan Multilayer Modified Titanium Coatings with Both Contact-Killing and Release-Killing Functions. J. Mater. Chem. B 2019, 7, 1951–1961. DOI: 10.1039/c8tb02425a.
  • Chen, T.-Y.; Huang, H.-C.; Cao, J.-L.; Xin, Y.-J.; Luo, W.-F.; Ao, N.-J Preparation and Characterization of Alginate/HACC/Oyster Shell Powder Biocomposite Scaffolds for Potential Bone Tissue Engineering Applications. RSC Adv. 2016, 6, 35577–35588. DOI: 10.1039/C5RA26805B.
  • Sa, Y.; Wang, M.; Deng, H.; Wang, Y.; Jiang, T. Beneficial Effects of Biomimetic Nano-Sized Hydroxyapatite/Antibiotic Gentamicin Enriched Chitosan–Glycerophosphate Hydrogel on the Performance of Injectable Polymethylmethacrylate. RSC Adv. 2015, 5, 91082–91092. DOI: 10.1039/C5RA15915F.
  • Stanislavov, A. S.; Sukhodub, L. F.; Sukhodub, L. B.; Kuznetsov, V. N.; Bychkov, K. L.; Kravchenko, M. I. Structural Features of Hydroxyapatite and Carbonated Apatite Formed under the Influence of Ultrasound and Microwave Radiation and Their Effect on the Bioactivity of the Nanomaterials. Ultrason. Sonochem. 2018, 42, 84–96. DOI: 10.1016/j.ultsonch.2017.11.011.
  • Suresh Kumar, C.; Dhanaraj, K.; Vimalathithan, R. M.; Ilaiyaraja, P.; Suresh, G. Hydroxyapatite for Bone Related Applications Derived from Sea Shell Waste by Simpleprecipitation Method. J. Asian. Ceram. Soc 2020, 8, 416–429. DOI: 10.1080/21870764.2020.1749373.
  • Wang, H. B.; Yan, K. Q.; Chen, J. D. Preparation of Hydroxyapatite Microspheres by Hydrothermal Self-Assembly of Marine Shell for Effective Adsorption of Congo Red. Mater. Lett. 2021, 304, 130573. DOI: 10.1016/j.matlet.2021.130573.
  • He, D.; Zhang, X.; Liu, P.; Liu, X.; Chen, X.; Ma, F.; Li, W.; Zhang, K.; Zhou, H. Effect of Hydrothermal Treatment Temperature on the Hydroxyapatite Coatings Deposited by Electrochemical Method. Surf. Coat. Technol. 2021, 406, 126656. DOI: 10.1016/j.surfcoat.2020.126656.
  • Fu, Y.-T.; Sheu, S.-Y.; Chen, Y.-S.; Chen, K.-Y.; Yao, C.-H. Porous Gelatin/Tricalcium Phosphate/Genipin Composites Containing Lumbrokinase for Bone Repair. Bone 2015, 78, 15–22. DOI: 10.1016/j.bone.2015.04.034.
  • Pal, A.; Nasker, P.; Paul, S.; Roy Chowdhury, A.; Sinha, A.; Das, M. Strontium Doped Hydroxyapatite from Mercenaria Clam Shells: Synthesis, Mechanical and Bioactivity Study. J. Mech. Behav. Biomed. Mater. 2019, 90, 328–336. DOI: 10.1016/j.jmbbm.2018.10.027.
  • Hu, D.; Ren, Q.; Li, Z. C.; et al. Chitosan-Based Biomimetically Mineralized Composite Materials in Human Hard Tissue Repair. Molecules 2020, 25, 4785. DOI: 10.3390/molecules25204785.
  • Han, G.; Zheng, Z.; Pan, Z.; Lin, Y.; Gan, S.; Jiao, Y.; Li, H.; Zhou, C.; Ding, S.; Li, L.; et al. Sulfated Chitosan Coated Polylactide Membrane Enhanced Osteogenic and Vascularization Differentiation in MC3T3-E1s and HUVECs co-Cultures System. Carbohydr. Polym. 2020, 245, 116522. DOI: 10.1016/j.carbpol.2020.116522.
  • Ku, K.-L.; Wu, Y.-S.; Wang, C.-Y.; Hong, D.-W.; Chen, Z.-X.; Huang, C.-A.; Chu, I.-M.; Lai, P.-L. Incorporation of Surface-Modified Hydroxyapatite into Poly(Methyl Methacrylate) to Improve Biological Activity and Bone Ingrowth. R Soc. Open Sci. 2019, 6, 182060. DOI: 10.1098/rsos.182060.
  • Ayatollahi, M. R.; Mirmohammadi, S. A.; Shirazi, H. A. The Tension-Shear Fracture Behavior of Polymeric Bone Cement Modified with Hydroxyapatite Nano-Particles. Arch. Civ. Mecha. Eng. 2018, 18, 50–59. DOI: 10.1016/j.acme.2017.06.001.
  • Tan, H.; Guo, S.; Yang, S.; Xu, X.; Tang, T. Physical Characterization and Osteogenic Activity of the Quaternized Chitosan-Loaded PMMA Bone Cement. Acta Biomater. 2012, 8, 2166–2174. DOI: 10.1016/j.actbio.2012.03.013.
  • Dong, Y.; Liang, J.; Cui, Y.; Xu, S.; Zhao, N. Fabrication of Novel Bioactive Hydroxyapatite-Chitosan-Silica Hybrid Scaffolds: Combined the Sol-Gel Method with 3D Plotting Technique. Carbohydr. Polym. 2018, 197, 183–193. DOI: 10.1016/j.carbpol.2018.05.086.
  • Chesnutt, B. M.; Yuan, Y.; Buddington, K.; Haggard, W. O.; Bumgardner, J. D. Bumgardner. Composite Chitosan/Nano-Hydroxyapatite Scaffolds Induce Osteocalcin Production by Osteoblasts in Vitro and Support Bone Formation in Vivo. Tissue Eng. Part A 2009, 15, 2571–2579. DOI: 10.1089/ten.tea.2008.0054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.