133
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Advances of multifunctional hydrogel-based therapy system for postoperative treatment of tumor

, , , , , , , & show all
Pages 1252-1261 | Received 04 Jul 2023, Accepted 01 Sep 2023, Published online: 09 Sep 2023

References

  • Rygalski, C. J.; Huttinger, Z. M.; Zhao, S.; Brock, G.; VanKoevering, K.; Old, M. O.; Teknos, T. N.; Rocco, J. W.; Puram, S. V.; Seim, N. B.; et al. High Surgical Volume is Associated with Improved Survival in Head and Neck Cancer. Oral. Oncol. 2023, 138, 106333. DOI: 10.1016/j.oraloncology.2023.106333.
  • Whelan, M. J.; Roos, R.; Fourie, M.; Van Aswegen, H. Preoperative Physiotherapy Education for Patients Undergoing Colorectal Cancer Resection. S. Afr. Fam. Pract. (2004) 2023, 65, e1–e10.
  • Magyar, C. T. J.; Rai, A.; Aigner, K. R.; Jamadar, P.; Tsui, T. Y.; Gloor, B.; Basu, S.; Vashist, Y. K. Current Standards of Surgical Management of Gastric Cancer: An Appraisal. Langenbecks. Arch. Surg. 2023, 408, 78. DOI: 10.1007/s00423-023-02789-5.
  • Park, S. E.; Choi, J. H.; Choi, C. H.; Park, S. W.; Kim, B. G.; Cha, S. J.; Hwang, I. G. Additional Chemotherapy with 5-FU plus Leucovorin between Preoperative Chemoradiotherapy and Surgery Improved Treatment Outcomes in Patients with Advanced Rectal Cancer. J. Cancer 2019, 10, 186–191. DOI: 10.7150/jca.25366.
  • McArthur, H. Combining Chemotherapy and Immunotherapy for the Treatment of Triple-Negative Breast Cancer. Oncology (Williston Park) 2019, 33, 137–140.
  • Manterola, C.; Grande, L.; Otzen, T.; Conejeros, R. Extension of Surgical Treatment and Adjuvant Chemotherapy in Patients with Incidental Gallbladder Cancer. Cir. Cir. 2019, 87, 313–320. DOI: 10.24875/CIRU.18000596.
  • Thon, N.; Kreth, F. W.; Tonn, J. C. The Role of Surgery for Brain Metastases from Solid Tumors. Handb. Clin. Neurol. 2018, 149, 113–121. DOI: 10.1016/B978-0-12-811161-1.00008-6.
  • Troisi, R.; Montalti, R.; Smeets, P.; Van Huysse, J.; Van Vlierberghe, H.; Colle, I.; De Gendt, S.; de Hemptinne, B. The Value of Laparoscopic Liver Surgery for Solid Benign Hepatic Tumors. Surg. Endosc. 2008, 22, 38–44. DOI: 10.1007/s00464-007-9527-y.
  • Afridi, S. A.; Kazaryan, A. M.; Marangos, I. P.; Rosok, B. I.; Fretland, A. A.; Yaqub, S.; Edwin, B. Laparoscopic Surgery for Solid Pseudopapillary Tumor of the Pancreas. JSLS 2014, 18, 236–242. DOI: 10.4293/108680813X13753907291837.
  • Xiao, Q.; Chen, T.; Chen, S. Fluorescent Contrast Agents for Tumor Surgery. Exp. Ther. Med. 2018, 16, 1577–1585. DOI: 10.3892/etm.2018.6401.
  • Shen, E. J. [Surgical Treatment of Lung Cancer with Brain Metastasis]. Zhonghua Zhong Liu Za Zhi 1990, 12, 210–212.
  • Shan, Y.; Che, X.; Zhao, D. B.; Bi, J. J.; Zhou, Z. X.; Shao, Y. F. [Surgical Management of Ovarian Metastasis from Colorectal Cancer]. Zhonghua Wei Chang Wai Ke Za Zhi 2007, 10, 146–148.
  • Selvakumar, D.; Dube, M.; Matey, P. Surgical Resection of a Liver Metastasis from Breast Cancer. Ann. R Coll. Surg. Engl. 2015, 97, e9-10–10. DOI: 10.1308/003588414X14055925059192.
  • Song, A.; Zhang, X.; Yu, F.; Li, D.; Shao, W.; Zhou, Y. Surgical Resection for Hepatic Metastasis from Gastric Cancer: A Multi- Institution Study. Oncotarget 2017, 8, 71147–71153. DOI: 10.18632/oncotarget.16705.
  • Takemura, N.; Saiura, A.; Koga, R.; Sano, T.; Yamaguchi, T. Surgical Indication and Survival Benefit of Hepatectomy for Gastric Cancer Liver Metastasis. Gan to Kagaku Ryoho. 2012, 39, 2455–2459.
  • Furuse, M.; Ikeda, N.; Kawabata, S.; Park, Y.; Takeuchi, K.; Fukumura, M.; Tsuji, Y.; Kimura, S.; Kanemitsu, T.; Yagi, R.; et al. Influence of Surgical Position and Registration Methods on Clinical Accuracy of Navigation Systems in Brain Tumor Surgery. Sci. Rep. 2023, 13, 2644. DOI: 10.1038/s41598-023-29710-w.
  • Higuchi, T.; Li, C. P.; Hirota, Y.; Hayashi, Y.; Arisawa, F.; Manabe, I.; Sakurai, T.; Adachi, A.; Saito, T. A Long-Term Survival Case of Histiocytic Sarcoma by Surgery Alone in a Japanese Elderly Breast Tumor Patient. Surg. Case Rep. 2023, 9, 33. DOI: 10.1186/s40792-023-01609-8.
  • Koguchi, T.; Shimizu, F.; Nagame, T.; Goto, Y.; Iwasaki, H.; Hanafusa, A.; Takagi, M.; Mohamaddan, S.; Nomura, K.; Muragaki, Y.; et al. Surgery Assistance System for Continuous Resection of Brain Tumors-Proposal of Continuous Tumor Resection Forceps, Tumor Cell Separation, Dehydration, and Isolation Mechanism. Int. J. Comput. Assist. Radiol. Surg. 2023, 18, 877–885. DOI: 10.1007/s11548-023-02845-x.
  • Lv, Y.; Li, S.; Liu, Z.; Ren, Z.; Zhao, J.; Tao, G.; Zheng, Z.; Han, Y.; Ye, B. Impact of Surgery and Adjuvant Chemotherapy on the Survival of Stage I Lung Adenocarcinoma Patients with Tumor Spread through Air Spaces. Lung Cancer 2023, 177, 51–58. DOI: 10.1016/j.lungcan.2023.01.009.
  • Zacek, P.; Brodak, M.; Gofus, J.; Dominik, J.; Moravek, P.; Louda, M.; Podhola, M.; Vojacek, J. Renal Cell Carcinoma with Intracardiac Tumor Thrombus Extension: Radical Surgery Yields 2 Years of Postoperative Survival in a Single-Center Study over a Period of 30 Years. Front. Oncol. 2023, 13, 1137804. DOI: 10.3389/fonc.2023.1137804.
  • Bittar, M. N.; Carey, J. A.; Barnard, J. B.; Pravica, V.; Deiraniya, A. K.; Yonan, N.; Hutchinson, I. V. Tumor Necrosis Factor Alpha Influences the Inflammatory Response after Coronary Surgery. Ann. Thorac. Surg. 2006, 81, 132–137. DOI: 10.1016/j.athoracsur.2005.07.037.
  • Korolczuk, A.; Jarosz, P.; Jasielski, P.; Mitura, P.; Bar, K. Inflammatory Myofibroblastic Tumor of the Kidney in Patient with Nephron-Sparing Surgery. Case Report and Review of the Literature. Indian J. Pathol. Microbiol. 2022, 65, 176–180. DOI: 10.4103/ijpm.ijpm_11_21.
  • Marcuello, M.; Mayol, X.; Felipe-Fumero, E.; Costa, J.; Lopez-Hierro, L.; Salvans, S.; Alonso, S.; Pascual, M.; Grande, L.; Pera, M. Modulation of the Colon Cancer Cell Phenotype by Pro-Inflammatory Macrophages: A Preclinical Model of Surgery-Associated Inflammation and Tumor Recurrence. PLoS One 2018, 13, e0192958. DOI: 10.1371/journal.pone.0192958.
  • Tomasdottir, H.; Hjartarson, H.; Ricksten, A.; Wasslavik, C.; Bengtsson, A.; Ricksten, S. E. Tumor Necrosis Factor Gene Polymorphism is Associated with Enhanced Systemic Inflammatory Response and Increased Cardiopulmonary Morbidity after Cardiac Surgery. Anesth. Analg. 2003, 97, 944–949. DOI: 10.1213/01.ANE.0000078574.76915.11.
  • Kasai, Y.; Hirose, K.; Corvera, C. U.; Kim, G. E.; Hope, T. A.; Shih, B. E.; Harun, N.; Kim, M. O.; Warren, R. S.; Bergsland, E. K.; Nakakura, E. K. Residual Tumor Volume Discriminates Prognosis after Surgery for Neuroendocrine Liver Metastasis. J. Surg. Oncol. 2020, 121, 330–336. DOI: 10.1002/jso.25811.
  • Lv, H.; Li, P.; Zhang, M.; Cao, L.; Wang, Z. A Case of Cervical Lymph Node Metastasis after Carotid Body Tumor Surgery. ]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2022, 36, 475–476.
  • Takano, Y.; Yamawaki, M.; Noda, J.; Azami, T.; Kobayashi, T.; Niiya, F.; Yamamura, E.; Maruoka, N.; Gomi, K.; Kuroki, Y.; et al. A Case of Liver Metastasis from Small Intestinal Gastrointestinal Stromal Tumor 25 Years after Surgery Including Autopsy Findings. Case Rep. Gastrointest. Med. 2021, 2021, 6642427. DOI: 10.1155/2021/6642427.
  • Wang, P.; Zang, S.; Li, G.; Qu, W.; Li, S.; Qiao, Q.; Jiang, Y. The Role of Surgery on the Primary Tumor Site in Bladder Cancer with Distant Metastasis: significance of Histology Type and Metastatic Pattern. Cancer Med. 2020, 9, 9293–9302. DOI: 10.1002/cam4.3560.
  • Wu, C.; Ye, K. Small Intestinal Metastasis Combined with Intussusception after Surgery for Breast Tumor. Asian J. Surg. 2022, 45, 1605–1606. DOI: 10.1016/j.asjsur.2022.03.041.
  • Zubarayev, M.; Min, E. K.; Son, T. Clinical and Molecular Prognostic Markers of Survival after Surgery for Gastric Cancer: tumor-Node-Metastasis Staging System and beyond. Transl. Gastroenterol. Hepatol. 2019, 4, 59–59. DOI: 10.21037/tgh.2019.08.05.
  • Besse, H. C.; Barten-van Rijbroek, A. D.; van der Wurff-Jacobs, K. M. G.; Bos, C.; Moonen, C. T. W.; Deckers, R. Tumor Drug Distribution after Local Drug Delivery by Hyperthermia, In Vivo. Cancers (Basel) 2019, 11, 1512. DOI: 10.3390/cancers11101512.
  • Chen, K. J.; Chaung, E. Y.; Wey, S. P.; Lin, K. J.; Cheng, F.; Lin, C. C.; Liu, H. L.; Tseng, H. W.; Liu, C. P.; Wei, M. C.; et al. Hyperthermia-Mediated Local Drug Delivery by a Bubble-Generating Liposomal System for Tumor-Specific Chemotherapy. ACS Nano. 2014, 8, 5105–5115. DOI: 10.1021/nn501162x.
  • Guerin, C.; Olivi, A.; Weingart, J. D.; Lawson, H. C.; Brem, H. Recent Advances in Brain Tumor Therapy: local Intracerebral Drug Delivery by Polymers. Invest. New Drugs 2004, 22, 27–37. DOI: 10.1023/b:drug.0000006172.65135.3e.
  • Hendriks, B. S.; Reynolds, J. G.; Klinz, S. G.; Geretti, E.; Lee, H.; Leonard, S. C.; Gaddy, D. F.; Espelin, C. W.; Nielsen, U. B.; Wickham, T. J. Multiscale Kinetic Modeling of Liposomal Doxorubicin Delivery Quantifies the Role of Tumor and Drug-Specific Parameters in Local Delivery to Tumors. CPT. Pharmacometrics Syst. Pharmacol. 2012, 1, e15. DOI: 10.1038/psp.2012.16.
  • Kong, X.; Feng, M.; Wu, L.; He, Y.; Mao, H.; Gu, Z. Biodegradable Gemcitabine-Loaded Microdevice with Sustained Local Drug Delivery and Improved Tumor Recurrence Inhibition Abilities for Postoperative Pancreatic Tumor Treatment. Drug Deliv. 2022, 29, 1595–1607. DOI: 10.1080/10717544.2022.2075984.
  • Le Bras, A. Local Drug Delivery to Brain Tumor. Lab Anim (NY) 2020, 49, 18. DOI: 10.1038/s41684-019-0453-0.
  • Lin, C.; Zhang, X.; Chen, H.; Bian, Z.; Zhang, G.; Riaz, M. K.; Tyagi, D.; Lin, G.; Zhang, Y.; Wang, J.; et al. Dual-Ligand Modified Liposomes Provide Effective Local Targeted Delivery of Lung-Cancer Drug by Antibody and Tumor Lineage-Homing Cell-Penetrating Peptide. Drug Deliv. 2018, 25, 256–266. DOI: 10.1080/10717544.2018.1425777.
  • Maeda, M.; Moriuchi, S.; Sano, A.; Yoshimine, T. New Drug Delivery System for Water-Soluble Drugs Using Silicone and Its Usefulness for Local Treatment: application of GCV-Silicone to GCV/HSV-tk Gene Therapy for Brain Tumor. J. Control. Release 2002, 84, 15–25. DOI: 10.1016/s0168-3659(02)00236-5.
  • Ohara, K.; Kohno, M.; Horibe, T.; Kawakami, K. Local Drug Delivery to a Human Pancreatic Tumor via a Newly Designed Multiple Injectable Needle. Mol. Clin. Oncol. 2013, 1, 231–234. DOI: 10.3892/mco.2012.47.
  • Ishiko, T.; Beppu, T.; Sugiyama, S.; Suyama, K.; Tashima, R.; Masuda, T.; Hirata, A.; Kanemitsu, K.; Egami, H.; Baba, H. Local Ablation Therapy for Hepatocellular Carcinoma (HCC) on the Liver Surface: Radio-Frequency Ablation Aimed at Tumor Marginal Pre-Ablation under Endoscopic Surgery. Gan to Kagaku Ryoho 2005, 32, 1657–1659.
  • Richter, J. C. O.; Haj-Hosseini, N.; Hallbeck, M.; Wardell, K. Combination of Hand-Held Probe and Microscopy for Fluorescence Guided Surgery in the Brain Tumor Marginal Zone. Photodiagnosis Photodyn. Ther. 2017, 18, 185–192. DOI: 10.1016/j.pdpdt.2017.01.188.
  • Huang, X.; Wang, L.; Guo, H.; Zhang, W. Macrophage Membrane-Coated Nanovesicles for Dual-Targeted Drug Delivery to Inhibit Tumor and Induce Macrophage Polarization. Bioact. Mater. 2023, 23, 69–79. DOI: 10.1016/j.bioactmat.2022.09.027.
  • Katopodi, T.; Petanidis, S.; Tsavlis, D.; Anestakis, D.; Charalampidis, C.; Chatziprodromidou, I.; Eskitzis, P.; Zarogoulidis, P.; Kosmidis, C.; Matthaios, D.; Porpodis, K. Engineered Multifunctional Nanocarriers for Controlled Drug Delivery in Tumor Immunotherapy. Front. Oncol. 2022, 12, 1042125. DOI: 10.3389/fonc.2022.1042125.
  • Liu, R.; Xu, B.; Ma, Z.; Ye, H.; Guan, X.; Ke, Y.; Xiang, Z.; Shi, Q. Controlled Release of Nitric Oxide for Enhanced Tumor Drug Delivery and Reduction of Thrombosis Risk. RSC Adv. 2022, 12, 32355–32364. DOI: 10.1039/d2ra05438h.
  • Park, S. H.; Eun, R.; Heo, J.; Lim, Y. T. Nanoengineered Drug Delivery in Cancer Immunotherapy for Overcoming Immunosuppressive Tumor Microenvironment. Drug Deliv. Transl. Res. 2023, 13, 2015–2031. DOI: 10.1007/s13346-022-01282-8.
  • Popescu, R. C.; Kopatz, V.; Andronescu, E.; Savu, D. I.; Doerr, W. Nanoparticle-Mediated Drug Delivery of Doxorubicin Induces a Differentiated Clonogenic Inactivation in 3D Tumor Spheroids in Vitro. Int. J. Mol. Sci. 2023, 24, 2198. DOI: 10.3390/ijms24032198.
  • Qiu, Z.; Yu, Z.; Xu, T.; Wang, L.; Meng, N.; Jin, H.; Xu, B. Novel Nano-Drug Delivery System for Brain Tumor Treatment. Cells 2022, 11, 3761. DOI: 10.3390/cells11233761.
  • Sun, R.; Xiang, J.; Zhou, Q.; Piao, Y.; Tang, J.; Shao, S.; Zhou, Z.; Bae, Y. H.; Shen, Y. The Tumor EPR Effect for Cancer Drug Delivery: Current Status, Limitations, and Alternatives. Adv. Drug Deliv. Rev. 2022, 191, 114614. DOI: 10.1016/j.addr.2022.114614.
  • Zhao, Y.; Ran, B.; Xie, X.; Gu, W.; Ye, X.; Liao, J. Developments on the Smart Hydrogel-Based Drug Delivery System for Oral Tumor Therapy. Gels 2022, 8, 741. DOI: 10.3390/gels8110741.
  • Jafarzadeh, S.; Bargahi, N.; Shamloo, H. B.; Soleymani, J. Concanavalin A-Conjugated Gold Nanoparticle/Silica Quantum Dot (AuNPs/SiQDs-Con a)-Based Platform as a Fluorescent Nanoprobe for the Bioimaging of Glycan-Positive Cancer Cells. RSC Adv. 2022, 12, 8492–8501. DOI: 10.1039/d2ra00035k.
  • Zang, S.; Deng, X.; Wang, J.; Zhao, Y.; Wu, S. Smart DNA Nanogel Coated Polydopamine Nanoparticle with High Drug Loading for Chemo-Photothermal Therapy of Cancer. Biointerphases 2022, 17, 061006. DOI: 10.1116/6.0002170.
  • Zhang, X.; Wang, M.; Feng, J.; Qin, B.; Zhang, C.; Zhu, C.; Liu, W.; Wang, Y.; Liu, W.; Huang, L.; et al. Multifunctional Nanoparticles co-Loaded with Adriamycin and MDR-Targeting siRNAs for Treatment of Chemotherapy-Resistant Esophageal Cancer. J. Nanobiotechnology. 2022, 20, 166. DOI: 10.1186/s12951-022-01377-x.
  • Gilmore, D.; Schulz, M.; Liu, R.; Zubris, K. A.; Padera, R. F.; Catalano, P. J.; Grinstaff, M. W.; Colson, Y. L. Cytoreductive Surgery and Intraoperative Administration of Paclitaxel-Loaded Expansile Nanoparticles Delay Tumor Recurrence in Ovarian Carcinoma. Ann. Surg. Oncol. 2013, 20, 1684–1693. DOI: 10.1245/s10434-012-2696-5.
  • Hill, T. K.; Abdulahad, A.; Kelkar, S. S.; Marini, F. C.; Long, T. E.; Provenzale, J. M.; Mohs, A. M. Indocyanine Green-Loaded Nanoparticles for Image-Guided Tumor Surgery. Bioconjug. Chem. 2015, 26, 294–303. DOI: 10.1021/bc5005679.
  • Hill, T. K.; Kelkar, S. S.; Wojtynek, N. E.; Souchek, J. J.; Payne, W. M.; Stumpf, K.; Marini, F. C.; Mohs, A. M. Near Infrared Fluorescent Nanoparticles Derived from Hyaluronic Acid Improve Tumor Contrast for Image-Guided Surgery. Theranostics 2016, 6, 2314–2328. DOI: 10.7150/thno.16514.
  • Hill, T. K.; Mohs, A. M. Image-Guided Tumor Surgery: will There Be a Role for Fluorescent Nanoparticles? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 498–511. DOI: 10.1002/wnan.1381.
  • Jiang, Y.; Lin, N.; Huang, S.; Lin, C.; Jin, N.; Zhang, Z.; Ke, J.; Yu, Y.; Zhu, J.; Wang, Y. Tracking Nonpalpable Breast Cancer for Breast-Conserving Surgery with Carbon Nanoparticles: implication in Tumor Location and Lymph Node Dissection. Medicine (Baltimore) 2015, 94, e605. DOI: 10.1097/MD.0000000000000605.
  • Lin, N.; Qiu, J.; Wu, W.; Yang, W.; Wang, Y. Preoperative Carbon Nanoparticles and Titanium Clip Combined Labeling Method for Transverse Colon Tumor Surgery. Asian J. Surg. 2019, 42, 844–845. DOI: 10.1016/j.asjsur.2019.04.006.
  • Shou, K.; Tang, Y.; Chen, H.; Chen, S.; Zhang, L.; Zhang, A.; Fan, Q.; Yu, A.; Cheng, Z. Diketopyrrolopyrrole-Based Semiconducting Polymer Nanoparticles for in Vivo Second near-Infrared Window Imaging and Image-Guided Tumor Surgery. Chem. Sci. 2018, 9, 3105–3110. DOI: 10.1039/c8sc00206a.
  • Jaiswal, C.; Gupta, T.; Jadi, P. K.; Moses, J. C.; Mandal, B. B. Injectable anti-Cancer Drug Loaded Silk-Based Hydrogel for the Prevention of Cancer Recurrence and Post-Lumpectomy Tissue Regeneration Aiding Triple-Negative Breast Cancer Therapy. Biomater. Adv. 2023, 145, 213224. DOI: 10.1016/j.bioadv.2022.213224.
  • Min Jung, J.; Lip Jung, Y.; Han Kim, S.; Sung Lee, D.; Thambi, T. Injectable Hydrogel Imbibed with Camptothecin-Loaded Mesoporous Silica Nanoparticles as an Implantable Sustained Delivery Depot for Cancer Therapy. J. Colloid Interface Sci. 2023, 636, 328–340. DOI: 10.1016/j.jcis.2023.01.028.
  • Dzhonova, D.; Olariu, R.; Leckenby, J.; Dhayani, A.; Vemula, P. K.; Prost, J. C.; Banz, Y.; Taddeo, A.; Rieben, R. Local Release of Tacrolimus from Hydrogel-Based Drug Delivery System is Controlled by Inflammatory Enzymes in Vivo and Can Be Monitored Non-Invasively Using in Vivo Imaging. PLoS One 2018, 13, e0203409. DOI: 10.1371/journal.pone.0203409.
  • Gou, M.; Li, X.; Dai, M.; Gong, C.; Wang, X.; Xie, Y.; Deng, H.; Chen, L.; Zhao, X.; Qian, Z.; Wei, Y. A Novel Injectable Local Hydrophobic Drug Delivery System: Biodegradable Nanoparticles in Thermo-Sensitive Hydrogel. Int. J. Pharm. 2008, 359, 228–233. DOI: 10.1016/j.ijpharm.2008.03.023.
  • Norouzi, M.; Nazari, B.; Miller, D. W. Injectable Hydrogel-Based Drug Delivery Systems for Local Cancer Therapy. Drug Discov. Today. 2016, 21, 1835–1849. DOI: 10.1016/j.drudis.2016.07.006.
  • Pitorre, M.; Gazaille, C.; Pham, L. T. T.; Frankova, K.; Bejaud, J.; Lautram, N.; Riou, J.; Perrot, R.; Genevieve, F.; Moal, V.; et al. Polymer-Free Hydrogel Made of Lipid Nanocapsules, as a Local Drug Delivery Platform. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 126, 112188. DOI: 10.1016/j.msec.2021.112188.
  • Tong, S.; Li, Q.; Liu, Q.; Song, B.; Wu, J. Recent Advances of the Nanocomposite Hydrogel as a Local Drug Delivery for Diabetic Ulcers. Front. Bioeng. Biotechnol. 2022, 10, 1039495. DOI: 10.3389/fbioe.2022.1039495.
  • Wang, Q.; Qu, Y.; Zhang, Z.; Huang, H.; Xu, Y.; Shen, F.; Wang, L.; Sun, L. Injectable DNA Hydrogel-Based Local Drug Delivery and Immunotherapy. Gels 2022, 8, 400. DOI: 10.3390/gels8070400.
  • Pakulska, M. M.; Vulic, K.; Tam, R. Y.; Shoichet, M. S. Hybrid Crosslinked Methylcellulose Hydrogel: A Predictable and Tunable Platform for Local Drug Delivery. Adv. Mater. 2015, 27, 5002–5008. DOI: 10.1002/adma.201502767.
  • Indolfi, L.; Causa, F.; Giovino, C.; Ungaro, F.; Quaglia, F.; Netti, P. A. Microsphere-Integrated Drug-Eluting Stents: PLGA Microsphere Integration in Hydrogel Coating for Local and Prolonged Delivery of Hydrophilic Antirestenosis Agents. J. Biomed. Mater. Res. A 2011, 97, 201–211. DOI: 10.1002/jbm.a.33039.
  • Deng, H.; Dong, A.; Song, J.; Chen, X. Injectable Thermosensitive Hydrogel Systems Based on Functional PEG/PCL Block Polymer for Local Drug Delivery. J. Control. Release 2019, 297, 60–70. DOI: 10.1016/j.jconrel.2019.01.026.
  • Zheng, Z.; Yang, X.; Zhang, Y.; Zu, W.; Wen, M.; Liu, T.; Zhou, C.; Li, L. An Injectable and pH-Responsive Hyaluronic Acid Hydrogel as Metformin Carrier for Prevention of Breast Cancer Recurrence. Carbohydr. Polym. 2023, 304, 120493. DOI: 10.1016/j.carbpol.2022.120493.
  • Qi, Y.; Yuan, Y.; Qian, Z.; Ma, X.; Yuan, W.; Song, Y. Injectable and Self-Healing Polysaccharide Hydrogel Loading Molybdenum Disulfide Nanoflakes for Synergistic Photothermal-Photodynamic Therapy of Breast Cancer. Macromol Biosci 2022, 22, e2200161.
  • Zhou, N.; Hu, K.; Guo, Z.; Zhang, Q.; Chen, J.; Zhang, T.; Gu, N. Thermo-Sensitive PLGA-PEG-PLGA Tri-Block Copolymer Hydrogel as Three-Dimensional Cell Culture Matrix for Ovarian Cancer Cells. J. Nanosci. Nanotechnol. 2018, 18, 5252–5255. DOI: 10.1166/jnn.2018.15372.
  • Meng, D.; Lei, H.; Zheng, X.; Han, Y.; Sun, R.; Zhao, D.; Liu, R. A Temperature-Sensitive Phase-Change Hydrogel of Tamoxifen Achieves the Long-Acting Antitumor Activation on Breast Cancer Cells. Onco. Targets Ther. 2019, 12, 3919–3931. DOI: 10.2147/OTT.S201421.
  • Chen, X.; Liu, Z. A pH-Responsive Hydrogel Based on a Tumor-Targeting Mesoporous Silica Nanocomposite for Sustained Cancer Labeling and Therapy. Macromol. Rapid Commun. 2016, 37, 1533–1539. DOI: 10.1002/marc.201600261.
  • Zhao, D.; Song, H.; Zhou, X.; Chen, Y.; Liu, Q.; Gao, X.; Zhu, X.; Chen, D. Novel Facile Thermosensitive Hydrogel as Sustained and Controllable Gene Release Vehicle for Breast Cancer Treatment. Eur. J. Pharm. Sci. 2019, 134, 145–152. DOI: 10.1016/j.ejps.2019.03.021.
  • Zhang, J.; Lin, W.; Yang, L.; Zhang, A.; Zhang, Y.; Liu, J.; Liu, J. Injectable and pH-Responsive Self-Assembled Peptide Hydrogel for Promoted Tumor Cell Uptake and Enhanced Cancer Chemotherapy. Biomater. Sci. 2022, 10, 854–862. DOI: 10.1039/d1bm01788h.
  • Xu, X.; Huang, Z.; Huang, Z.; Zhang, X.; He, S.; Sun, X.; Shen, Y.; Yan, M.; Zhao, C. Injectable, NIR/pH-Responsive Nanocomposite Hydrogel as Long-Acting Implant for Chemophotothermal Synergistic Cancer Therapy. ACS Appl. Mater. Interfaces. 2017, 9, 20361–20375. DOI: 10.1021/acsami.7b02307.
  • He, P. P.; Du, X.; Cheng, Y.; Gao, Q.; Liu, C.; Wang, X.; Wei, Y.; Yu, Q.; Guo, W. Thermal-Responsive MXene-DNA Hydrogel for near-Infrared Light Triggered Localized Photothermal-Chemo Synergistic Cancer Therapy. Small 2022, 18, e2200263. DOI: 10.1002/smll.202200263.
  • Zhao, Z.; Zhang, H.; Chen, H.; Xu, Y.; Ma, L.; Wang, Z. An Efficient Photothermal-Chemotherapy Platform Based on a Polyacrylamide/Phytic Acid/Polydopamine Hydrogel. J. Mater. Chem. B 2022, 10, 4012–4019. DOI: 10.1039/d2tb00677d.
  • Zhao, D.; Hu, C.; Fu, Q.; Lv, H. Combined Chemotherapy for Triple Negative Breast Cancer Treatment by Paclitaxel and Niclosamide Nanocrystals Loaded Thermosensitive Hydrogel. Eur. J. Pharm. Sci. 2021, 167, 105992. DOI: 10.1016/j.ejps.2021.105992.
  • Palange, A. L.; Mascolo, D. D.; Ferreira, M.; Gawne, P. J.; Spano, R.; Felici, A.; Bono, L.; Moore, T. L.; Salerno, M.; Armirotti, A.; Decuzzi, P. Boosting the Potential of Chemotherapy in Advanced Breast Cancer Lung Metastasis via Micro-Combinatorial Hydrogel Particles. Adv Sci (Weinh) 2023, 10, e2205223. DOI: 10.1002/advs.202205223.
  • Ni, Y.; Zhao, W.; Cheng, W.; Deng, C.; Ying, Z.; Li, L.; Wang, X.; Sun, C.; Tu, J.; Jiang, L. Lipopeptide Liposomes-Loaded Hydrogel for Multistage Transdermal Chemotherapy of Melanoma. J. Control. Release 2022, 351, 245–254. DOI: 10.1016/j.jconrel.2022.09.014.
  • Jeswani, G.; Chablani, L.; Gupta, U.; Sahoo, R. K.; Nakhate, K. T.; Taksande, A.G. Exploration of Hemocompatibility and Intratumoral Accumulation of Paclitaxel after Loco-Regional Administration of Thermoresponsive Hydrogel Composed of Poloxamer and Xanthan Gum: An Application to Dose-Dense Chemotherapy. Int. J. Biol. Macromol. 2023, 226, 746–759. DOI: 10.1016/j.ijbiomac.2022.11.285.
  • Cao, Y.; Zhou, Y.; Chen, Z.; Zhang, Z.; Chen, X.; He, C. Localized Chemotherapy Based on Injectable Hydrogel Boosts the Antitumor Activity of Adoptively Transferred T Lymphocytes in Vivo. Adv. Healthc. Mater 2021, 10, e2100814.
  • Yang, X.; Wang, Y.; Mao, T.; Wang, Y.; Liu, R.; Yu, L.; Ding, J. An Oxygen-Enriched Thermosensitive Hydrogel for the Relief of a Hypoxic Tumor Microenvironment and Enhancement of Radiotherapy. Biomater. Sci. 2021, 9, 7471–7482. DOI: 10.1039/d1bm01280k.
  • Wang, Y.; Wei, Y.; Wu, Y.; Zong, Y.; Song, Y.; Pu, S.; Wu, W.; Zhou, Y.; Xie, J.; Yin, H. Multifunctional Nano-Realgar Hydrogel for Enhanced Glioblastoma Synergistic Chemotherapy and Radiotherapy: A New Paradigm of an Old Drug. Int. J. Nanomedicine. 2023, 18, 743–763. DOI: 10.2147/IJN.S394377.
  • Hadigal, S. R.; Gupta, A. K. Application of Hydrogel Spacer SpaceOAR Vue for Prostate Radiotherapy. Tomography 2022, 8, 2648–2661. DOI: 10.3390/tomography8060221.
  • Gao, Q.; Jiang, Y.; Li, X.; Chen, H.; Tang, S.; Chen, H.; Shi, X.; Chen, Y.; Fu, S.; Lin, S. Intratumoral Injection of Anlotinib Hydrogel Combined with Radiotherapy Reduces Hypoxia in Lewis Lung Carcinoma Xenografts: Assessment by Micro Fluorine-18-Fluoromisonidazole Positron Emission Tomography/Computed Tomography Hypoxia Imaging. Front. Oncol. 2021, 11, 628895. DOI: 10.3389/fonc.2021.628895.
  • Dong, X.; Tian, Y.; Wang, F.; Chen, C.; Wang, Y.; Ma, J. Gold-Nanoparticle-Enhanced Radio-Fluorogenic Hydrogel Sensor for Low Radiation Doses in Clinical Radiotherapy. Polymers (Basel) 2022, 14, 4841. DOI: 10.3390/polym14224841.
  • Chen, M.; Wang, Z.; Suo, W.; Bao, Z.; Quan, H. Injectable Hydrogel for Synergetic Low Dose Radiotherapy, Chemodynamic Therapy and Photothermal Therapy. Front. Bioeng. Biotechnol. 2021, 9, 757428. DOI: 10.3389/fbioe.2021.757428.
  • Xu, S.; Wang, W.; Li, X.; Liu, J.; Dong, A.; Deng, L. Sustained Release of PTX-Incorporated Nanoparticles Synergized by Burst Release of DOX⋅HCl from Thermosensitive Modified PEG/PCL Hydrogel to Improve anti-Tumor Efficiency. Eur. J. Pharm. Sci. 2014, 62, 267–273. DOI: 10.1016/j.ejps.2014.06.002.
  • Konishi, M.; Tabata, Y.; Kariya, M.; Hosseinkhani, H.; Suzuki, A.; Fukuhara, K.; Mandai, M.; Takakura, K.; Fujii, S. In Vivo anti-Tumor Effect of Dual Release of Cisplatin and Adriamycin from Biodegradable Gelatin Hydrogel. J. Control. Release 2005, 103, 7–19. DOI: 10.1016/j.jconrel.2004.11.014.
  • Huang, C.; Chen, B.; Chen, M.; Jiang, W.; Liu, W. Injectable Hydrogel for Cu(2+) Controlled Release and Potent Tumor Therapy. Life (Basel) 2021, 11, 391. DOI: 10.3390/life11050391.
  • Gong, S.; Liang, X.; Zhang, M.; Li, L.; He, T.; Yuan, Y.; Li, X.; Liu, F.; Yang, X.; Shen, M.; et al. Tumor Microenvironment-Activated Hydrogel Platform with Programmed Release Property Evokes a Cascade-Amplified Immune Response against Tumor Growth, Metastasis and Recurrence. Small 2022, 18, e2107061. DOI: 10.1002/smll.202107061.
  • Gaowa, A.; Horibe, T.; Kohno, M.; Sato, K.; Harada, H.; Hiraoka, M.; Tabata, Y.; Kawakami, K. Combination of Hybrid Peptide with Biodegradable Gelatin Hydrogel for Controlled Release and Enhancement of anti-Tumor Activity in Vivo. J. Control. Release 2014, 176, 1–7. DOI: 10.1016/j.jconrel.2013.12.021.
  • Darge, H. F.; Andrgie, A. T.; Hanurry, E. Y.; Birhan, Y. S.; Mekonnen, T. W.; Chou, H. Y.; Hsu, W. H.; Lai, J. Y.; Lin, S. Y.; Tsai, H. C. Localized Controlled Release of Bevacizumab and Doxorubicin by Thermo-Sensitive Hydrogel for Normalization of Tumor Vasculature and to Enhance the Efficacy of Chemotherapy. Int. J. Pharm. 2019, 572, 118799. DOI: 10.1016/j.ijpharm.2019.118799.
  • James-Bhasin, M.; Siegel, P. M.; Nazhat, S. N. A Three-Dimensional Dense Collagen Hydrogel to Model Cancer Cell/Osteoblast Interactions. J. Funct. Biomater. 2018, 9, 72. DOI: 10.3390/jfb9040072.
  • Moon, S.; Ok, Y.; Hwang, S.; Lim, Y. S.; Kim, H. Y.; Na, Y. J.; Yoon, S. A Marine Collagen-Based Biomimetic Hydrogel Recapitulates Cancer Stem Cell Niche and Enhances Progression and Chemoresistance in Human Ovarian Cancer. Mar. Drugs 2020, 18, 498.
  • Sun, Z.; Wang, X.; Liu, J.; Wang, Z.; Wang, W.; Kong, D.; Leng, X. ICG/l-Arginine Encapsulated PLGA Nanoparticle-Thermosensitive Hydrogel Hybrid Delivery System for Cascade Cancer Photodynamic-NO Therapy with Promoted Collagen Depletion in Tumor Tissues. Mol. Pharm. 2021, 18, 928–939. DOI: 10.1021/acs.molpharmaceut.0c00937.
  • Chen, Q.; Wang, C.; Zhang, X.; Chen, G.; Hu, Q.; Li, H.; Wang, J.; Wen, D.; Zhang, Y.; Lu, Y.; et al. In Situ Sprayed Bioresponsive Immunotherapeutic Gel for Post-Surgical Cancer Treatment. Nat. Nanotechnol. 2019, 14, 89–97. DOI: 10.1038/s41565-018-0319-4.
  • Liu, X.; Li, Z.; Loh, X. J.; Chen, K.; Li, Z.; Wu, Y. L. Targeted and Sustained Corelease of Chemotherapeutics and Gene by Injectable Supramolecular Hydrogel for Drug-Resistant Cancer Therapy. Macromol. Rapid Commun. 2019, 40, e1800117. DOI: 10.1002/marc.201800117.
  • Tsai, H. C.; Chou, H. Y.; Chuang, S. H.; Lai, J. Y.; Chen, Y. S.; Wen, Y. H.; Yu, L. Y.; Lo, C. L. Preparation of Immunotherapy Liposomal-Loaded Thermal-Responsive Hydrogel Carrier in the Local Treatment of Breast Cancer. Polymers (Basel) 2019, 11, 1592. DOI: 10.3390/polym11101592.
  • Castelletto, V.; Edwards-Gayle, C. J. C.; Greco, F.; Hamley, I. W.; Seitsonen, J.; Ruokolainen, J. Self-Assembly, Tunable Hydrogel Properties, and Selective anti-Cancer Activity of a Carnosine-Derived Lipidated Peptide. ACS Appl. Mater. Interfaces. 2019, 11, 33573–33580. DOI: 10.1021/acsami.9b09065.
  • Lu, Y.; Wu, C.; Yang, Y.; Chen, X.; Ge, F.; Wang, J.; Deng, J. Inhibition of Tumor Recurrence and Metastasis via a Surgical Tumor-Derived Personalized Hydrogel Vaccine. Biomater. Sci. 2022, 10, 1352–1363. DOI: 10.1039/d1bm01596f.
  • Isohata, N.; Endo, S.; Ashizawa, M.; Nemoto, T.; Nemoto, D.; Aizawa, M.; Utano, K.; Togashi, K.; Suzushino, S.; Soeta, N.; Saito, T. [The Evaluation of Neoadjuvant Chemotherapy for Locally Advanced Rectal Cancer]. Gan to Kagaku Ryoho. 2022, 49, 1399–1401.
  • Sponholz, S.; Koch, A.; Mese, M.; Becker, S.; Sebastian, M.; Fischer, S.; Trainer, S.; Schreiner, W. Lung Cancer Resection after Immunochemotherapy vs. chemotherapy in Oligometastatic NSCLC. Thorac. Cardiovasc. Surg. 2023, DOI: 10.1055/a-2028-7955.
  • Li, Y. F.; Zhang, W. B.; Gao, Y. Y. Prognostic Effect of Excessive Chemotherapy Cycles for Stage II and III Gastric Cancer Patients after D2 + Gastrectomy. World J. Gastrointest. Surg. 2023, 15, 32–48. DOI: 10.4240/wjgs.v15.i1.32.
  • Liang, B.; Miao, Y.; Zhao, L.; Fang, L.; Deng, D. A Dandelion-like Nanomedicine via Hierarchical Self-Assembly for Synergistic Chemotherapy and Photo-Dynamic Cancer Therapy. Nanomedicine 2023, 49, 102660. DOI: 10.1016/j.nano.2023.102660.
  • Liu, M.; Song, X.; Wen, Y.; Zhu, J. L.; Li, J. Injectable Thermoresponsive Hydrogel Formed by Alginate-g-Poly(N-Isopropylacrylamide) That Releases Doxorubicin-Encapsulated Micelles as a Smart Drug Delivery System. ACS Appl. Mater. Interfaces 2017, 9, 35673–35682. DOI: 10.1021/acsami.7b12849.
  • Harrison, H.; Stewart, G. D.; Usher-Smith, J. A. Patient Experience of Follow-up after Surgery for Kidney Cancer: A Focus Group Study. BJU Int. 2023, 132, 47–55. DOI: 10.1111/bju.15982.
  • Suh, J. W.; Oh, H. K.; Lee, J.; Yang, I. J.; Ahn, H. M.; Kim, D. W.; Kang, S. B.; Shin, R.; Heo, S. C.; Lee, D. W.; Seoul Colorectal Research, G.; et al. Safety of Early Surgery after Self-Expandable Metallic Stenting for Obstructive Left-Sided Colorectal Cancer. Surg. Endosc. 2023, 37, 3873–3883. DOI: 10.1007/s00464-023-09891-1.
  • Terashima, T.; Yamashita, T.; Takabatake, H.; Nakanuma, S.; Kinoshita, J.; Yagi, S.; Mizukoshi, E.; Harada, K.; Fushida, S.; Kaneko, S. Successful Second Conversion Surgery after Trastuzumab Deruxtecan for Recurrent HER2-Positive Gastric Cancer. Clin. J. Gastroenterol. 2023, 16, 330–335. DOI: 10.1007/s12328-023-01764-3.
  • Kuddushi, M.; Ray, D.; Aswal, V.; Hoskins, C.; Malek, N. Poly(Vinyl Alcohol) and Functionalized Ionic Liquid-Based Smart Hydrogels for Doxorubicin Release. ACS Appl. Bio Mater. 2020, 3, 4883–4894. DOI: 10.1021/acsabm.0c00393.
  • Xu, L.; Chen, Y.; Zhang, P.; Tang, J.; Xue, Y.; Luo, H.; Dai, R.; Jin, J.; Liu, J. 3D Printed Heterogeneous Hybrid Hydrogel Scaffolds for Sequential Tumor Photothermal-Chemotherapy and Wound Healing. Biomater. Sci. 2022, 10, 5648–5661. DOI: 10.1039/d2bm00903j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.