93
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A pH-sensitive magnetic hydrogel nanocomposite based on alginate for controlled release of methotrexate

ORCID Icon, , &
Pages 1216-1229 | Received 21 Apr 2023, Accepted 14 Oct 2023, Published online: 30 Oct 2023

References

  • Kashkooli, F. M.; Soltani, M.; Souri, M. Controlled anti-Cancer Drug Release through Advanced Nano-drug Delivery Systems: Static and Dynamic Targeting Strategies. J. Contrl. Release. 2020, 327, 316–349. DOI: 10.1016/j.jconrel.2020.08.012.
  • Álvarez-González, B.; Rozalen, M.; Fernández-Perales, M.; Álvarez, M. A.; Sánchez-Polo, M. Methotrexate Gold Nanocarriers: Loading and Release Study: Its Activity in Colon and Lung Cancer Cells. Molecules 2020, 25, 6049. DOI: 10.3390/molecules25246049.
  • Rostamizadeh, K.; Manafi, M.; Nosrati, H.; Manjili, H. K.; Danafar, H. Methotrexate-Conjugated mPEG–PCL Copolymers: A Novel Approach for Dual Triggered Drug Delivery. New J. Chem. 2018, 42, 5937–5945. DOI: 10.1039/C7NJ04864E.
  • Sun, Z.; Song, C.; Wang, C.; Hu, Y.; Wu, J. Hydrogel-Based Controlled Drug Delivery for Cancer Treatment: A Review. Mol. Pharm. 2020, 17, 373–391. DOI: 10.1021/acs.molpharmaceut.9b01020.
  • Sood, N.; Bhardwaj, A.; Mehta, S.; Mehta, A. Stimuli-Responsive Hydrogels in Drug Delivery and Tissue Engineering. Drug Deliv. 2016, 23, 758–780. DOI: 10.3109/10717544.2014.940091.
  • Jacob, J.; Haponiuk, J. T.; Thomas, S.; Gopi, S. Biopolymer Based Nanomaterials in Drug Delivery Systems: A Review. Mater. Today Chem. 2018, 9, 43–55. DOI: 10.1016/j.mtchem.2018.05.002.
  • Nezami, S.; Nematidil, N.; Farzan, F.; Mirzaie, F.; Sadeghi, H.; Sadeghi, M. pH-Sensitive Drug Delivery Systems Based on CMC-ECH-CTS and CMC-ECH-CTS/Fe3O4 Beads. Polym. Test. 2021, 97, 107144. DOI: 10.1016/j.polymertesting.2021.107144.
  • Jain, S.; Datta, M. Montmorillonite-Alginate Microspheres as a Delivery Vehicle for Oral Extended Release of Venlafaxine Hydrochloride. J. Drug Deliv. Sci. Technol. 2016, 33, 149–156. DOI: 10.1016/j.jddst.2016.04.002.
  • Soumia, A.; Adel, M.; Amina, S.; Bouhadjar, B.; Amal, D.; Farouk, Z.; Abdelkader, B.; Mohamed, S. Fe3O4-Alginate Nanocomposite Hydrogel Beads Material: One-pot Preparation, Release Kinetics and Antibacterial Activity. Int. J. Biol. Macromol. 2020, 145, 466–475. DOI: 10.1016/j.ijbiomac.2019.12.211.
  • Rashidzadeh, B.; Shokri, E.; Mahdavinia, G. R.; Moradi, R.; Mohamadi-Aghdam, S.; Abdi, S. Preparation and Characterization of Antibacterial Magnetic-/pH-Sensitive Alginate/Ag/Fe3O4 Hydrogel Beads for Controlled Drug Release. Int. J. Biol. Macromol. 2020, 154, 134–141. DOI: 10.1016/j.ijbiomac.2020.03.028.
  • Viscusi, G.; Gorrasi, G. Facile Preparation of Layered Double Hydroxide (LDH)-Alginate Beads as Sustainable System for the Triggered Release of Diclofenac: Effect of pH and Temperature on Release Rate. Int. J. Biol. Macromol. 2021, 184, 271–281. DOI: 10.1016/j.ijbiomac.2021.05.217.
  • Zhang, B.; Yan, Y.; Shen, Q.; Ma, D.; Huang, L.; Cai, X.; Tan, S. A Colon Targeted Drug Delivery System Based on Alginate Modificated Graphene Oxide for Colorectal Liver Metastasis. Mater. Sci. Eng. C Mater Biol. Appl. 2017, 79, 185–190. DOI: 10.1016/j.msec.2017.05.054.
  • Farhadnejad, H.; Mortazavi, S. A.; Erfan, M.; Darbasizadeh, B.; Motasadizadeh, H.; Fatahi, Y. Facile Preparation and Characterization of pH Sensitive Mt/CMC Nanocomposite Hydrogel Beads for Propranolol-Controlled Release. Int. J. Biol. Macromol. 2018, 111, 696–705. DOI: 10.1016/j.ijbiomac.2018.01.061.
  • Bello, M. L.; Junior, A. M.; Freitas, C. A.; Moreira, M. L. A.; da Costa, J. P.; de Souza, M. A.; Santos, B. A. M. C.; de Sousa, V. P.; Castro, H. C.; Rodrigues, C. R.; et al. Development of Novel Montmorillonite-based Sustained Release System for Oral Bromopride Delivery. Eur. J. Pharm. Sci. 2022, 175, 106222. DOI: 10.1016/j.ejps.2022.106222.
  • Farshi Azhar, F.; Olad, A. A Study on Sustained Release Formulations for Oral Delivery of 5-Fluorouracil Based on Alginate–Chitosan/Montmorillonite Nanocomposite Systems. Appl. Clay Sci. 2014, 101, 288–296. DOI: 10.1016/j.clay.2014.09.004.
  • Reddy, O. S.; Subha, M. C. S.; Jithendra, T.; Madhavi, C.; Rao, K. C. Curcumin Encapsulated Dual Cross Linked Sodium Alginate/Montmorillonite Polymeric Composite Beads for Controlled Drug Delivery. J. Pharm. Anal. 2021, 11, 191–199. DOI: 10.1016/j.jpha.2020.07.002.
  • Iliescu, R. I.; Andronescu, E.; Ghitulica, C. D.; Voicu, G.; Ficai, A.; Hoteteu, M. Montmorillonite–Alginate Nanocomposite as a Drug Delivery System–Incorporation and In vitro Release of Irinotecan. Int. J. Pharm. 2014, 463, 184–192. DOI: 10.1016/j.ijpharm.2013.08.043.
  • Ganapathe, L. S.; Mohamed, M. A.; Mohamad Yunus, R.; Berhanuddin, D. D. Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation. Magnetochem 2020, 6, 68. DOI: 10.3390/magnetochemistry6040068.
  • Zhao, C.; Liu, X.; Zhang, X.; Yan, H.; Qian, Z.; Li, X.; Ma, Z.; Han, Q.; Pei, C. A Facile One-Step Method for Preparation of Fe3O4/CS/INH Nanoparticles as a Targeted Drug Delivery for Tuberculosis. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 1182–1188. DOI: 10.1016/j.msec.2017.03.137.
  • Naderi, Z.; Azizian, J.; Moniri, E.; Farhadyar, N. Synthesis and Characterization of Carboxymethyl Cellulose/β-Cyclodextrin/Chitosan Hydrogels and Investigating the Effect of Magnetic Nanoparticles (Fe3O4) on a Novel Carrier for a Controlled Release of Methotrexate as Drug Delivery. J. Inorg. Organomet. Polym. 2020, 30, 1339–1351. DOI: 10.1007/s10904-019-01301-1.
  • Xu, X.; Qu, T.; Fan, L.; Chen, X.; Gao, M.; Zhang, J.; Guo, T. Preparation of pH-and Magnetism-Responsive Sodium Alginate/Fe3O4@ HNTs Nanocomposite Beads for Controlled Release of Granulysin. RSC Adv. 2016, 6, 111747–111753. DOI: 10.1039/C6RA22827E.
  • Yew, Y. P.; Shameli, K.; Mohamad, S. E.; Lee, K. X.; Teow, S. Y. Green Synthesized Montmorillonite/Carrageenan/Fe3O4 Nanocomposites for pH-Responsive Release of Protocatechuic Acid and Its Anticancer Activity. Int. J. Mol. Sci. 2020, 21, 4851. DOI: 10.3390/ijms21144851.
  • Mahdavinia, G. R.; Rahmani, Z.; Karami, S.; Pourjavadi, A. Magnetic/pH-Sensitive κ-Carrageenan/Sodium Alginate Hydrogel Nanocomposite Beads: Preparation, Swelling Behavior, and Drug Delivery. J. Biomater. Sci. Polym. Ed. 2014, 25, 1891–1906. [23] DOI: 10.1080/09205063.2014.956166.
  • Xing, J.; Deng, L.; Dong, A. Chitosan/Alginate Nanoparticles Stabilized by Poloxamer for the Controlled Release of 5‐Fluorouracil. J. Appl. Polymer Sci. 2010, 117, 2354–2359. DOI: 10.1002/app.32083.
  • Papadimitriou, S.; Bikiaris, D.; Avgoustakis, K.; Karavas, E.; Georgarakis, M. Chitosan Nanoparticles Loaded with Dorzolamide and Pramipexole. Carbohydr. Polym. 2008, 73, 44–54. DOI: 10.1016/j.carbpol.2007.11.007.
  • Higuchi, T. Theoretical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices. J. Pharm. Sci. 1963, 52, 1145–1149. DOI: 10.1002/jps.2600521210.
  • Korsmeyer, R. W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N. A. Mechanisms of Solute Release from Porous Hydrophilic Polymers. Int. J. Pharm. 1983, 15, 25–35. DOI: 10.1016/0378-5173(83)90064-9.
  • Serra, L.; Doménech, J.; Peppas, N. A. Drug Transport Mechanisms and Release Kinetics from Molecularly Designed Poly (Acrylic Acid-g-Ethylene Glycol) Hydrogels. Biomaterials 2006, 27, 5440–5451. DOI: 10.1016/j.biomaterials.2006.06.011.
  • Costa, P.; Lobo, J. M. S. Modeling and Comparison of Dissolution Profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. DOI: 10.1016/S0928-0987(01)00095-1.
  • Farshi Azhar, F.; Rezaei, M.; Olad, A.; Mousazadeh, H. The Effect of Montmorillonite in Graphene Oxide/Chitosan Nanocomposite on Controlled Release of Gemcitabine. Polym. Bull. 2022, 79, 5861–5883. DOI: 10.1007/s00289-021-03774-y.
  • Mousazadeh, H.; Bonabi, E.; Zarghami, N. Stimulus-Responsive Drug/Gene Delivery System Based on Polyethylenimine Cyclodextrin Nanoparticles for Potential Cancer Therapy. Carbohyd. Polym. 2022, 276, 118747. DOI: 10.1016/j.carbpol.2021.118747.
  • Mousazadeh, H.; Milani, M.; Zarghami, N.; Alizadeh, E.; Safa, K. D. Study of the Cytotoxic and Bactericidal Effects of Sila‐Substituted Thioalkyne and Mercapto‐Thione Compounds Based on 1, 2, 3‐Triazole Scaffold. Basic Clin. Pharmacol. Toxicol. 2017, 121, 390–399. DOI: 10.1111/bcpt.12822.
  • Mahkam, M.; Zeynabad, F. B.; Alizadeh, E.; Rahimi, M.; Rahimi, F.; Salehi, R. Novel Methotrexate-Ciprofloxacin Loaded Alginate-Clay Based Nanocomposite as Anticancer and Antibacterial co-Drug Delivery System. Adv. Pharm. Bull. 2021, 11, 477–489. DOI: 10.34172/apb.2021.055.
  • Liu, Q.; Li, Q.; Xu, S.; Zheng, Q.; Cao, X. Preparation and Properties of 3D Printed Alginate–Chitosan Polyion Complex Hydrogels for Tissue Engineering. Polymers (Basel) 2018, 10, 664. DOI: 10.3390/polym10060664.
  • Ayyappan, S.; Sundaraganesan, N.; Aroulmoji, V.; Murano, E.; Sebastian, S. Molecular Structure, Vibrational Spectra and DFT Molecular Orbital Calculations (TD-DFT and NMR) of the Antiproliferative Drug Methotrexate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 77, 264–275. DOI: 10.1016/j.saa.2010.05.021.
  • Thangaraj, B.; Jia, Z.; Dai, L.; Liu, D.; Du, W. Lipase NS81006 Immobilized on Fe3O4 Magnetic Nanoparticles for Biodiesel Production. Ovidius. Univ. Ann. Chem. 2016, 27, 13–21. DOI: 10.1515/auoc-2016-0008.
  • Kayal, S.; Ramanujan, R. V. Doxorubicin Loaded PVA Coated Iron Oxide Nanoparticles for Targeted Drug Delivery. Mater. Sci. Eng. C 2010, 30, 484–490. DOI: 10.1016/j.msec.2010.01.006.
  • Jannah, N. R.; Onggo, D. Synthesis of Fe3O4 Nanoparticles for Color Removal of Printing Ink Solution. J. Phys. Conf. Ser. 2019, 1245, 012040. DOI: 10.1088/1742-6596/1245/1/012040.
  • Loh, K. S.; Lee, Y. H.; Musa, A.; Salmah, A. A.; Zamri, I. Use of Fe3O4 Nanoparticles for Enhancement of Biosensor Response to the Herbicide 2, 4-Dichlorophenoxyacetic Acid. Sensors (Basel) 2008, 8, 5775–5791. DOI: 10.3390/s8095775.
  • Zhang, B.; Zhang, T.; Zhang, Z.; Xie, M. Hydrothermal Synthesis of a Graphene/Magnetite/Montmorillonite Nanocomposite and Its Ultrasonically Assisted Methylene Blue Adsorption. J. Mater. Sci. 2019, 54, 11037–11055. DOI: 10.1007/s10853-019-03659-6.
  • Shivakumara, L. R.; Demappa, T. Synthesis and Swelling Behavior of Sodium Alginate/Poly (Vinyl Alcohol) Hydrogels. Turk. J. Pharm. Sci. 2019, 16, 252–260. DOI: 10.4274/tjps.galenos.2018.92408.
  • Cheryl-Low, Y. L.; Theam, K. L.; Lee, H. V. Alginate-Derived Solid Acid Catalyst for Esterification of Low-Cost Palm Fatty Acid Distillate. Energ. Convers. Manag. 2015, 106, 932–940. DOI: 10.1016/j.enconman.2015.10.018.
  • Shagholani, H.; Ghoreishi, S. M.; Mousazadeh, M. Improvement of Interaction between PVA and Chitosan via Magnetite Nanoparticles for Drug Delivery Application. Int. J. Biol. Macromol. 2015, 78, 130–136. DOI: 10.1016/j.ijbiomac.2015.02.042.
  • Alzahrani, E. Photodegradation of Binary Azo Dyes Using Core-Shell Fe3O4/SiO2/TiO2 Nanospheres. AJAC 2017, 08, 95–115. DOI: 10.4236/ajac.2017.81008.
  • Caruntu, D.; Caruntu, G.; Chen, Y.; O'Connor, C. J.; Goloverda, G.; Kolesnichenko, V. L. Synthesis of Variable-Sized Nanocrystals of Fe3O4 with High Surface Reactivity. Chem. Mater. 2004, 16, 5527–5534. DOI: 10.1021/cm0487977.
  • Mahdavinia, G. R.; Afzali, A.; Etemadi, H.; Hoseinzadeh, H. Magnetic/pH-Sensitive Nanocomposite Hydrogel Based Carboxymethyl Cellulose–g-Polyacrylamide/Montmorillonite for Colon Targeted Drug Delivery. Nanomed. Res. J. 2017, 111–122. DOI: 10.22034/nmrj.2017.58964.1058.
  • Kevadiya, B. D.; Patel, T. A.; Jhala, D. D.; Thumbar, R. P.; Brahmbhatt, H.; Pandya, M. P.; Rajkumar, S.; Jena, P. K.; Joshi, G. V.; Gadhia, P. K.; et al. Layered Inorganic Nanocomposites: A Promising Carrier for 5-Fluorouracil (5-FU). Eur. J. Pharm. Biopharm. 2012, 81, 91–101. DOI: 10.1016/j.ejpb.2012.01.004.
  • Matai, I.; Garg, M.; Rana, K.; Singh, S. Polydopamine Functionalized Hydrogel Beads as Magnetically Separable Antibacterial Materials. RSC Adv. 2019, 9, 13444–13457. DOI: 10.1039/C9RA00623K.
  • Saadat, F.; Zerafat, M. M.; Foorginezhad, S. Adsorption of Copper Ions from Aqueous Media Using montmorillonite-Al2O3 Nano-Adsorbent Incorporated with Fe3O4 for Facile Separation. Korean J. Chem. Eng. 2020, 37, 2273–2286. DOI: 10.1007/s11814-020-0651-x.
  • Zheng, X.; Dou, J.; Yuan, J.; Qin, W.; Hong, X.; Ding, A. Removal of Cs + from Water and Soil by Ammonium-Pillared Montmorillonite/Fe3O4 Composite. J. Environ. Sci. (China) 2017, 56, 12–24. DOI: 10.1016/j.jes.2016.08.019.
  • Cypes, S. H.; Saltzman, W. M.; Giannelis, E. P. Organosilicate-Polymer Drug Delivery Systems: Controlled Release and Enhanced Mechanical Properties. J. Contrl. Release. 2003, 90, 163–169. DOI: 10.1016/S0168-3659(03)00133-0.
  • Akbari, E.; Mousazadeh, H.; Sabet, Z.; Fattahi, T.; Dehnad, A.; Akbarzadeh, A.; Alizadeh, E. Dual Drug Delivery of Trapoxin a and Methotrexate from Biocompatible PLGA-PEG Polymeric Nanoparticles Enhanced Antitumor Activity in Breast Cancer Cell Line. J. Drug Deliv. Sci. Technol. 2021, 61, 102294. DOI: 10.1016/j.jddst.2020.102294.
  • Akbari, E.; Mousazadeh, H.; Hanifehpour, Y.; Mostafavi, E.; Gorabi, A. M.; Nejati, K.; Keyhanvar, P.; Pazoki-Toroudi, H.; Mohammadhosseini, M.; Akbarzadeh, A. Co-Loading of Cisplatin and Methotrexate in Nanoparticle-Based PCL-PEG System Enhances Lung Cancer Chemotherapy Effects. J. Clust. Sci. 2022, 33, 1751–1762. DOI: 10.1007/s10876-021-02101-9.
  • Worm, J.; Kirkin, A. F.; Dzhandzhugazyan, K. N.; Guldberg, P. Methylation-Dependent Silencing of the Reduced Folate Carrier Gene in Inherently Methotrexate-Resistant Human Breast Cancer Cells. J. Biol. Chem. 2001, 276, 39990–40000. DOI: 10.1074/jbc.M103181200.
  • Wu, Z.; Shah, A.; Patel, N.; Yuan, X. Development of Methotrexate Proline Prodrug to Overcome Resistance by MDA-MB-231 Cells. Bioorg. Med. Chem. Lett. 2010, 20, 5108–5112. DOI: 10.1016/j.bmcl.2010.07.024.
  • Fernández, M.; Javaid, F.; Chudasama, V. Advances in Targeting the Folate Receptor in the Treatment/Imaging of Cancers. Chem. Sci. 2018, 9, 790–810. DOI: 10.1039/C7SC04004K.
  • Real, P. J.; Sierra, A.; De Juan, A.; Segovia, J. C.; Lopez-Vega, J. M.; Fernandez-Luna, J. L. Resistance to Chemotherapy via Stat3-Dependent Overexpression of Bcl-2 in Metastatic Breast Cancer Cells. Oncogene 2002, 21, 7611–7618. DOI: 10.1038/sj.onc.1206004.
  • Dong, L.; Wang, W.; Wang, F.; Stoner, M.; Reed, J. C.; Harigai, M.; Samudio, I.; Kladde, M. P.; Vyhlidal, C.; Safe, S. Mechanisms of Transcriptional Activation of Bcl-2 Gene Expression by 17β-Estradiol in Breast Cancer Cells. J. Biol. Chem. 1999, 274, 32099–32107. DOI: 10.1074/jbc.274.45.32099.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.