67
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Targeted co-delivery of paclitaxel and chrysin by hyaluronate/chitosan-coated polymeric nanoparticles for prostate cancer chemotherapy

, , , , &
Pages 1238-1251 | Received 05 Jun 2023, Accepted 26 Oct 2023, Published online: 12 Nov 2023

References

  • Ismael, S. A.; Mohammed, A.; Hefny, H. An Enhanced Deep Learning Approach for Brain Cancer MRI Images Classification Using Residual Networks. Artif. Intell. Med. 2020, 102, 101779. DOI: 10.1016/j.artmed.2019.101779.
  • Sun, W.; Shi, Q.; Zhang, H.; Yang, K.; Ke, Y.; Wang, Y.; Qiao, L. Advances in the Techniques and Methodologies of Cancer Gene Therapy. Discov. Med. 2019, 27, 45–55.
  • Islami, F.; Goding Sauer, A.; Miller, K. D.; Siegel, R. L.; Fedewa, S. A.; Jacobs, E. J.; McCullough, M. L.; Patel, A. V.; Ma, J.; Soerjomataram, I.; et al. Proportion and Number of Cancer Cases and Deaths Attributable to Potentially Modifiable Risk Factors in the United States. CA. Cancer J. Clin. 2018, 68, 31–54. DOI: 10.3322/caac.21440.
  • Ferlay, J.; Colombet, M.; Isabelle S.; Parkin, D.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. International Journal of Cancer 2021. DOI: 10.1002/ijc.33588.
  • Sung, H.; Ferlay, J.; Siegel, R. L.; et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021.
  • Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D. M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer. 2021, 149, 778–789. DOI: 10.1002/ijc.33588.
  • Tian, Y.; Liu, Z.; Wang, J.; Li, L.; Wang, F.; Zhu, Z.; Wang, X. Nanomedicine for Combination Urologic Cancer Immunotherapy. Pharmaceutics. 2023, 15, 546. DOI: 10.3390/pharmaceutics15020546.
  • Kumar, A. R.; Devan, A. R.; Nair, B.; Vinod, B. S.; Nath, L. R. Harnessing the Immune System against Cancer: current Immunotherapy Approaches and Therapeutic Targets. Mol. Biol. Rep. 2021, 48, 8075–8095. DOI: 10.1007/s11033-021-06752-9.
  • Behranvand, N.; Nasri, F.; Zolfaghari Emameh, R.; Khani, P.; Hosseini, A.; Garssen, J.; Falak, R. Chemotherapy: A Double-Edged Sword in Cancer Treatment. Cancer Immunol. Immunother. 2022, 71, 507–526. DOI: 10.1007/s00262-021-03013-3.
  • Ashrafizadeh, M.; Aghamiri, S.; Tan, S. C.; Zarrabi, A.; Sharifi, E.; Rabiee, N.; Kadumudi, F. B.; Pirouz, A. D.; Delfi, M.; Byrappa, K.; et al. Nanotechnological Approaches in Prostate Cancer Therapy: Integration of Engineering and Biology. Nano Today. 2022, 45, 101532. DOI: 10.1016/j.nantod.2022.101532.
  • Mahabady, M. K.; Mirzaei, S.; Saebfar, H.; Gholami, M. H.; Zabolian, A.; Hushmandi, K.; Hashemi, F.; Tajik, F.; Hashemi, M.; Kumar, A. P.; et al. Noncoding RNAs and Their Therapeutics in Paclitaxel Chemotherapy: Mechanisms of Initiation, Progression, and Drug Sensitivity. J. Cell. Physiol. 2022, 237, 2309–2344. DOI: 10.1002/jcp.30751.
  • Sharifi-Rad, J.; Quispe, C.; Patra, J. K.; Singh, Y. D.; Panda, M. K.; Das, G.; Adetunji, C. O.; Michael, O. S.; Sytar, O.; Polito, L.; et al. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. Oxid. Med. Cell. Longev. 2021, 2021, 3687700–3687724. DOI: 10.1155/2021/3687700.
  • Münz, F.; Lopez Perez, R.; Trinh, T.; Sisombath, S.; Weber, K. J.; Wuchter, P.; Debus, J.; Saffrich, R.; Huber, P. E.; Nicolay, N. H. Human Mesenchymal Stem Cells Lose Their Functional Properties after Paclitaxel Treatment. Sci. Rep. 2018, 8, 312. DOI: 10.1038/s41598-017-18862-1.
  • Hashemi, M.; Zandieh, M. A.; Talebi, Y.; Rahmanian, P.; Shafiee, S. S.; Nejad, M. M.; Babaei, R.; Sadi, F. H.; Rajabi, R.; Abkenar, Z. O.; et al. Paclitaxel and Docetaxel Resistance in Prostate Cancer: Molecular Mechanisms and Possible Therapeutic Strategies. Biomed. Pharmacother. 2023, 160, 114392. DOI: 10.1016/j.biopha.2023.114392.
  • Della Corte, L.; Barra, F.; Foreste, V.; Giampaolino, P.; Evangelisti, G.; Ferrero, S.; Bifulco, G. Advances in Paclitaxel Combinations for Treating Cervical Cancer. Expert Opin. Pharmacother. 2020, 21, 663–677. DOI: 10.1080/14656566.2020.1724284.
  • Rabani, E.; Behzadi, R.; Majdizadeh, M.; Haghiralsadat, B. F, Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran. Fabrication of Liposomal Formulat- Ion Containing Paclitaxel and Comparison of Its Toxicity with Non-Liposomal Paclitaxel on MCF-7 Breast Cancer Cell Line. JMJ. 2020, 18, 26–40. DOI: 10.52547/jmj.18.2.26.
  • Ashrafizadeh, M.; Mirzaei, S.; Hashemi, F.; Zarrabi, A.; Zabolian, A.; Saleki, H.; Sharifzadeh, S. O.; Soleymani, L.; Daneshi, S.; Hushmandi, K.; et al. New Insight towards Development of Paclitaxel and Docetaxel Resistance in Cancer Cells: EMT as a Novel Molecular Mechanism and Therapeutic Possibilities. Biomed. Pharmacother. 2021, 141, 111824. DOI: 10.1016/j.biopha.2021.111824.
  • Vaidya, F. U.; Sufiyan Chhipa, A.; Mishra, V.; Gupta, V. K.; Rawat, S. G.; Kumar, A.; Pathak, C. Molecular and Cellular Paradigms of Multidrug Resistance in Cancer. Cancer Rep. 2022, 5, e1291. DOI: 10.1002/cnr2.1291.
  • Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy: A Review. Int. J. Mol. Sci. 2020, 21, 3233. DOI: 10.3390/ijms21093233.
  • Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. DOI: 10.15171/apb.2017.041.
  • Kryszczuk, M.; Kowalczuk, O. Significance of NRF2 in Physiological and Pathological Conditions an Comprehensive Review. Arch. Biochem. Biophys. 2022, 730, 109417. DOI: 10.1016/j.abb.2022.109417.
  • Poornashree, M.; Kumar, H.; Ajmeer, R.; Jain, R.; Jain, V. Dual Role of Nrf2 in Cancer: molecular Mechanisms, Cellular Functions and Therapeutic Interventions. Mol. Biol. Rep. 2023, 50, 1871–1883. DOI: 10.1007/s11033-022-08126-1.
  • Menegon, S.; Columbano, A.; Giordano, S. The Dual Roles of NRF2 in Cancer. Trends Mol. Med. 2016, 22, 578–593. DOI: 10.1016/j.molmed.2016.05.002.
  • Taguchi, K.; Motohashi, H.; Yamamoto, M. Molecular Mechanisms of the Keap1–Nrf2 Pathway in Stress Response and Cancer Evolution. Genes Cells. 2011, 16, 123–140. DOI: 10.1111/j.1365-2443.2010.01473.x.
  • Jeddi, F.; Soozangar, N.; Sadeghi, M. R.; Somi, M. H.; Samadi, N. Contradictory Roles of Nrf2/Keap1 Signaling Pathway in Cancer Prevention/Promotion and Chemoresistance. DNA Repair 2017, 54, 13–21. DOI: 10.1016/j.dnarep.2017.03.008.
  • Matsuoka, Y.; Yoshida, R.; Kawahara, K.; Sakata, J.; Arita, H.; Nkashima, H.; Takahashi, N.; Hirayama, M.; Nagata, M.; Hirosue, A.; et al. The Antioxidative Stress Regulator Nrf2 Potentiates Radioresistance of Oral Squamous Cell Carcinoma Accompanied with Metabolic Modulation. Lab. Invest. 2022, 102, 896–907. DOI: 10.1038/s41374-022-00776-w.
  • Raghunath, A.; Sundarraj, K.; Arfuso, F.; Sethi, G.; Perumal, E. Dysregulation of Nrf2 in Hepatocellular Carcinoma: Role in Cancer Progression and Chemoresistance. Cancers. 2018, 10, 481. DOI: 10.3390/cancers10120481.
  • Wang, J.; Liu, Z.; Hu, T.; Han, L.; Yu, S.; Yao, Y.; Ruan, Z.; Tian, T.; Huang, T.; Wang, M.; et al. Nrf2 Promotes Progression of Non-Small Cell Lung Cancer through Activating Autophagy. Cell Cycle. 2017, 16, 1053–1062. DOI: 10.1080/15384101.2017.1312224.
  • Gañán-Gómez, I.; Wei, Y.; Yang, H.; Boyano-Adánez, M. C.; García-Manero, G. Oncogenic Functions of the Transcription Factor Nrf2. Free Radic. Biol. Med. 2013, 65, 750–764. DOI: 10.1016/j.freeradbiomed.2013.06.041.
  • Park, J. Y.; Kim, Y. W.; Park, Y. K. Nrf2 Expression is Associated with Poor Outcome in Osteosarcoma. Pathology. 2012, 44, 617–621. DOI: 10.1097/PAT.0b013e328359d54b.
  • Homma, S.; Ishii, Y.; Morishima, Y.; Yamadori, T.; Matsuno, Y.; Haraguchi, N.; Kikuchi, N.; Satoh, H.; Sakamoto, T.; Hizawa, N.; et al. Nrf2 Enhances Cell Proliferation and Resistance to Anticancer Drugs in Human Lung Cancer. Clin. Cancer Res. 2009, 15, 3423–3432. DOI: 10.1158/1078-0432.CCR-08-2822.
  • Kim, S. K.; Yang, J. W.; Kim, M. R.; Roh, S. H.; Kim, H. G.; Lee, K. Y.; Jeong, H. G.; Kang, K. W. Increased Expression of Nrf2/ARE-Dependent anti-Oxidant Proteins in Tamoxifen-Resistant Breast Cancer Cells. Free Radic. Biol. Med. 2008, 45, 537–546. DOI: 10.1016/j.freeradbiomed.2008.05.011.
  • Wang, X. J.; Sun, Z.; Villeneuve, N. F.; Zhang, S.; Zhao, F.; Li, Y.; Chen, W.; Yi, X.; Zheng, W.; Wondrak, G. T.; et al. Nrf2 Enhances Resistance of Cancer Cells to Chemotherapeutic Drugs, the Dark Side of Nrf2. Carcino-genesis. 2008, 29, 1235–1243. DOI: 10.1093/carcin/bgn095.
  • Lau, A.; Villeneuve, N. F.; Sun, Z.; Wong, P. K.; Zhang, D. D. Dual Roles of NRF2 in Cancer. Pharmacol. Res. 2008, 58, 262–270. DOI: 10.1016/j.phrs.2008.09.003.
  • Jalali, A.; Mahmoudi, S.; Larki Harchegani, A.; Mohammadiasl, J.; Ahmadzadeh, A. Evaluation of Nrf2, Keap1 and Apoptotic Pathway Genes Expression in Acute Myeloid Leukemia Patients. Iran J. Pharm. Res. 2021, 20, 398–407. DOI: 10.22037/ijpr.2019.14907.12738.
  • Talebi, M.; Talebi, M.; Farkhondeh, T.; Kopustinskiene, D. M.; Simal-Gandara, J.; Bernatoniene, J.; Samarghandian, S. An Updated Review on the Versatile Role of Chrysin in Neurological Diseases: Chemistry, Pharmacology, and Drug Delivery Approaches. Biomed. Pharmacother. 2021, 141, 111906. DOI: 10.1016/j.biopha.2021.111906.
  • Kasala, E. R.; Bodduluru, L. N.; Madana, R. M.; V, A. K.; Gogoi, R.; Barua, C. C. Chemopreventive and Therapeutic Potential of Chrysin in Cancer: mechanistic Perspectives. Toxicol. Lett. 2015, 233, 214–225. DOI: 10.1016/j.toxlet.2015.01.008.
  • Mehdi, S. H.; Nafees, S.; Zafaryab, M. D.; Khan, M. A.; Rizvi, A. Chrysin: A Promising Anticancer Agent Its Current Trends and Future Perspectives. Eur. J. Exp. Bio. 2018, 08, 16. DOI: 10.21767/2248-9215.100057.
  • Talebi, M.; Talebi, M.; Farkhondeh, T.; Simal-Gandara, J.; Kopustinskiene, D. M.; Bernatoniene, J.; Samarghandian, S. Emerging Cellular and Molecular Mechanisms Underlying Anticancer Indications of Chrysin. Cancer Cell Int. 2021, 21, 214. DOI: 10.1186/s12935-021-01906-y.
  • Zhu, J.; Wang, H.; Chen, F.; Fu, J.; Xu, Y.; Hou, Y.; Kou, H. H.; Zhai, C.; Nelson, M. B.; Zhang, Q.; et al. An Overview of Chemical Inhibitors of the Nrf2-ARE Signaling Pathway and Their Potential Applications in Cancer Therapy. Free Radic. Biol. Med. 2016, 99, 544–556. DOI: 10.1016/j.freeradbiomed.2016.09.010.
  • Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. DOI: 10.3389/fmolb.2020.00193.
  • Prabhu, V.; Uzzaman, S.; Grace, V.; Guruvayoorappan, C. Nanoparticles in Drug Delivery and Cancer Therapy: The Giant Rats Tail. JCT. 2011, 02, 325–334. DOI: 10.4236/jct.2011.23045.
  • Li, Y.; Thambi, T.; Lee, D. S. Co-Delivery of Drugs and Genes Using Polymeric Nanoparticles for Synergistic Cancer Therapeutic Effects. Adv. Healthc. Mater. 2018, 7, 1700886. DOI: 10.1002/adhm.201700886.
  • Zhao, K.; Li, D.; Shi, C.; Ma, X.; Rong, G.; Kang, H.; Wang, X.; Sun, B. Biodegradable Polymeric Nanoparticles as the Delivery Carrier for Drug. Curr. Drug Deliv. 2016, 13, 494–499. DOI: 10.2174/156720181304160521004609.
  • Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems. Colloids Surf. B Biointerfaces. 2010, 75, 1–18. DOI: 10.1016/j.colsurfb.2009.09.001.
  • da Silva Alves, D. C.; Healy, B.; Pinto, L.; Cadaval, T. R. S.; Jr.; Breslin, C. B. Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules. 2021, 26, 594. DOI: 10.3390/molecules26030594.
  • Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A. D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C. N. pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers. 2017, 9, 137. DOI: 10.3390/polym9040137.
  • Radwan, R.; Abdelkader, A.; Fathi, H. A.; Elsabahy, M.; Fetih, G.; El-Badry, M. Development and Evaluation of Letrozole‑Loaded Hyaluronic Acid/Chitosan‑Coated Poly(d,l‑Lactide‑co‑Glycolide) Nanoparticles. J. Pharm. Innov. 2022, 17, 572–583. DOI: 10.1007/s12247-021-09538-5.
  • Buckley, C.; Murphy, E. J.; Montgomery, T. R.; Major, I. Hyaluronic Acid: A Review of the Drug Delivery Capabilities of This Naturally Occurring Polysaccharide. Polymers. 2022, 14, 3442. DOI: 10.3390/polym14173442.
  • Lee, S. Y.; Kang, M. S.; Jeong, W. Y.; Han, D.-W.; Kim, K. S. Hyaluronic Acid-Based Theranostic Nanomedicines for Targeted Cancer Therapy. Cancers. 2020, 12, 940. DOI: 10.3390/cancers12040940.
  • Taghipour-Sabzevar, V.; Sharifi, T.; Moghaddam, M. M. Polymeric Nanoparticles as Carrier for Targeted and Controlled Delivery of Anticancer Agents. Ther. Deliv. 2019, 10, 527–550. DOI: 10.4155/tde-2019-0044.
  • Su, C. Y.; Huang, G. C.; Chang, Y. C.; Chen, Y. J.; Fang, H. W. Analyzing the Expression of Biomarkers in Prostate Cancer Cell Lines. In Vivo. 2021, 35, 1545–1548. DOI: 10.21873/invivo.12408.
  • Aslantürk, Ö. S. In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. Genotoxicity - A Predictable Risk to Our Actual World. InTech 2018. DOI: 10.5772/intechopen.71923.
  • Zhang, Z.; Wang, X.; Li, B.; Hou, Y.; Yang, J.; Yi, L. Development of a Novel Morphological Paclitaxel-Loaded PLGA Microspheres for Effective Cancer Therapy: In Vitro and in Vivo Evaluations. Drug Deliv. 2018, 25, 166–177. DOI: 10.1080/10717544.2017.1422296.
  • Amatya, S.; Park, E. J.; Park, J. H.; Kim, J. S.; Seol, E.; Lee, H.; Choi, H.; Shin, Y.-H.; Na, D. H. Drug Release Testing Methods of Polymeric Particulate Drug Formulations. J. Pharm. Investigat. 2013, 43, 259–266. DOI: 10.1007/s40005-013-0072-5.
  • Ray, A.; Gadnayak, A.; Jena, S.; Sahoo, A.; Patnaik, J.; Panda, P.; Nayak, S. Hedychium Spicatum Rhizome Essential Oil Induces Apoptosis in Human Prostate Adenocarcinoma PC-3 Cells via Mitochondrial Stress and Caspase Activation. Heliyon. 2023, 9, e13807. DOI: 10.1016/j.heliyon.2023.e13807.
  • Chou, T. C. Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol. Rev. 2006, 58, 621–681. DOI: 10.1124/pr.58.3.10.
  • Eatemadi, A.; Daraee, H.; Aiyelabegan, H. T.; Negahdari, B.; Rajeian, B.; Zarghami, N. Synthesis and Characterization of Chrysin-Loaded PCL-PEG-PCL Nanoparticle and Its Effect on Breast Cancer Cell Line. Biomed. Pharmacother. 2016, 84, 1915–1922. DOI: 10.1016/j.biopha.2016.10.095.
  • Hu, C.; Chen, Z.; Wu, S.; Han, Y.; Wang, H.; Sun, H.; Kong, D.; Leng, X.; Wang, C.; Zhang, L.; Zhu, D. Micelle or Polymersome Formation by PCL-PEG-PCL Copolymers as Drug Delivery Systems. Chin. Chem. Lett. 2017, 28, 1905–1909. DOI: 10.1016/j.cclet.2017.07.020.
  • Khaledi, S.; Jafari, S.; Hamidi, S.; Molavi, O.; Davaran, S. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin. Journal of Biomaterials Science, Polymer Edition, 2020, 31(9), 1107-1126. DOI: 10.1080/09205063.2020.1743946
  • Abdelkader, A.; El-Mokhtar, M.A.; Abdelkader, O.; Hamad, M.A.; Elsabahy, M.; El-Gazayerly, O.N. Ultrahigh Antibacterial Efficacy of Meropenem-Loaded Chitosan Nanoparticles in a Septic Animal Model. Carbohydr. Polym. 2017, 174, 1041–1050. DOI: 10.1016/j.carbpol.2017.07.030.
  • Nath, S. D.; Abueva, C.; Kim, B.; Lee, B. T. Chitosan-Hyaluronic Acid Polyelectrolyte Complex Scaffold Crosslinked with Genipin for Immobilization and Controlled Release of BMP-2. Carbohydr. Polym. 2015, 115, 160–169. DOI: 10.1016/j.carbpol.2014.08.077.
  • Pereira, F. M.; Melo, M. N.; Santos, Á. K. M.; Oliveira, K. V.; Diz, F. M.; Ligabue, R. A.; Morrone, F. B.; Severino, P.; Fricks, A. T. Hyaluronic Acid-Coated Chitosan Nanoparticles as Carrier for the Enzyme/Prodrug Complex Based on Horseradish Peroxidase/Indole-3-Acetic Acid: Characterization and Potential Therapeutic for Bladder Cancer Cells. Enzyme Microb. Technol. 2021, 150, 109889. DOI: 10.1016/j.enzmictec.2021.109889.
  • Badran, M. M.; Alomrani, A. H.; Harisa, G. I.; Ashour, A. E.; Kumar, A.; Yassin, A. E. Novel Docetaxel Chitosan-Coated PLGA/PCL Nanoparticles with Magnified Cytotoxicity and Bioavailability. Biomed. Pharmacother. 2018, 106, 1461–1468. DOI: 10.1016/j.biopha.2018.07.102.
  • Wang, L.; Jia, E. Ovarian Cancer Targeted Hyaluronic Acid-Based Nanoparticle System for Paclitaxel Delivery to Overcome Drug Resistance. Drug Deliv. 2016, 23, 1810–1817. DOI: 10.3109/10717544.2015.1101792.
  • Xiao, K.; Li, Y.; Luo, J.; Lee, J. S.; Xiao, W.; Gonik, A. M.; Agarwal, R. G.; Lam, K. S. The Effect of Surface Charge on in Vivo Biodistribution of PEG-Oligocholic Acid Based Micellar Nanoparticles. Biomaterials. 2011, 32, 3435–3446. DOI: 10.1016/j.biomaterials.2011.01.021.
  • Shao, X. R.; Wei, X. Q.; Song, X.; Hao, L. Y.; Cai, X. X.; Zhang, Z. R.; Peng, Q.; Lin, Y. F. Independent Effect of Polymeric Nanoparticle Zeta Potential/Surface Charge, on Their Cytotoxicity and Affinity to Cells. Cell Prolif. 2015, 48, 465–474. DOI: 10.1111/cpr.12192.
  • Zamani, S.; Khoee, S. Preparation of Core–Shell Chitosan/PCL-PEG Triblock Copolymer Nanoparticles with ABA and BAB Morphologies: Effect of Intraparticle Interactions on Physicochemical Properties. Polymer 2012, 53, 5723–5736. DOI: 10.1016/j.polymer.201.2.09.051.
  • Kesharwani, P.; Chadar, R.; Sheikh, A.; Rizg, W. Y.; Safhi, A. Y. CD44-Targeted Nanocarrier for Cancer Therapy. Front. Pharmacol. 2021, 12, 800481. DOI: 10.3389/fphar.2021.800481.
  • Abedi, F.; Davaran, S.; Hekmati, M.; Akbarzadeh, A.; Baradaran, B.; Moghaddam S. V. An improved method in fabrication of smart dual-responsive nanogels for controlled release of doxorubicin and curcumin in HT-29 colon cancer cells. J Nanobiotechnol 2021, 19, 18. DOI: 10.1186/s12951-020-00764-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.