44
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Micro texturing and laser irradiation, two stimulus of growth and differentiation to neural like cell on the PMMA polymer

, , , , &
Pages 1305-1316 | Received 12 Jun 2023, Accepted 09 Nov 2023, Published online: 27 Nov 2023

References

  • Papadimitriou, L.; Manganas, P.; Ranella, A.; Stratakis, E. Biofabrication for Neural Tissue Engineering Applications. Mater. Today. Bio. 2020, 6, 100043. DOI: 10.1016/j.mtbio.2020.100043.
  • Wang, J.; Chen, N.; Ramakrishna, S.; Tian, L.; Mo, X. The Effect of Plasma Treated PLGA/MWCNTs-COOH Composite Nanofibers on Nerve Cell Behavior. Polymers 2017, 9, 713. DOI: 10.3390/polym9120713.
  • Ai, J.; Kiasat-Dolatabadi, A.; Ebrahimi-Barough, S.; Ai, A.; Lotfibakhshaiesh, N.; Norouzi-Javidan, A.; Saberi, H.; Arjmand, B.; Aghayan, H. R. Polymeric Scaffolds in Neural Tissue Engineering: A Review. Arch. Neurosci. 2013, 1, 15–20. DOI: 10.5812/archneurosci.9144.
  • Boni, R.; Ali, A.; Shavandi, A.; Clarkson, A. N. Current and Novel Polymeric Biomaterials for Neural Tissue Engineering. J. Biomed. Sci. 2018, 25, 90. DOI: 10.1186/s12929-018-0491-8.
  • Zhang, M.; Li, C.; Zhou, L.-P.; Pi, W.; Zhang, P.-X. Polymer Scaffolds for Biomedical Applications in Peripheral Nerve Reconstruction. Molecules 2021, 26, 2712. DOI: 10.3390/molecules26092712.
  • Koh, H. S.; Yong, T.; Chan, C. K.; Ramakrishna, S. Enhancement of Neurite Outgrowth Using Nano-Structured Scaffolds Coupled with Laminin. Biomaterials 2008, 29, 3574–3582. DOI: 10.1016/j.biomaterials.2008.05.014.
  • Kijeńska, E.; Prabhakaran, M. P.; Swieszkowski, W.; Kurzydlowski, K. J.; Ramakrishna, S. Electrospun Bio-Composite P(LLA-CL)/Collagen I/Collagen III Scaffolds for Nerve Tissue Engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 1093–1102. DOI: 10.1002/jbm.b.32676.
  • Meco, E.; Lampe, K. J. Microscale Architecture in Biomaterial Scaffolds for Spatial Control of Neural Cell Behavior. Front. Mater. 2018, 5, 2. DOI: 10.3389/fmats.2018.00002.
  • Recknor, J. B. J. B.; Recknor, J. C. J. C.; Sakaguchi, D. S. D. S.; Mallapragada, S. K. S. K. Oriented Astroglial Cell Growth on Micropatterned Polystyrene Substrates. Biomaterials 2004, 25, 2753–2767. DOI: 10.1016/j.biomaterials.2003.11.045.
  • Oh, J.; Recknor, J. B.; Recknor, J. C.; Mallapragada, S. K.; Sakaguchi, D. S. Soluble Factors from Neocortical Astrocytes Enhance Neuronal Differentiation of Neural Progenitor Cells from Adult Rat Hippocampus on Micropatterned Polymer Substrates. J. Biomed. Mater. Res. A 2009, 91, 575–585. DOI: 10.1002/jbm.a.32242.
  • McCormick, A. M.; Maddipatla, M. V. S. N.; Shi, S.; Chamsaz, E. A.; Yokoyama, H.; Joy, A.; Leipzig, N. D. Micropatterned Coumarin Polyester Thin Films Direct Neurite Orientation. ACS Appl. Mater. Interfaces. 2014, 6, 19655–19667. DOI: 10.1021/am5044328.
  • Pardo-Figuerez, M.; Martin, N. R. W.; Player, D. J.; Roach, P.; Christie, S. D. R.; Capel, A. J.; Lewis, M. P. Controlled Arrangement of Neuronal Cells on Surfaces Functionalized with Micropatterned Polymer Brushes. ACS Omega 2018, 3, 12383–12391. DOI: 10.1021/acsomega.8b01698.
  • Obilor, A. F.; Pacella, M.; Wilson, A.; Silberschmidt, V. V. Micro-Texturing of Polymer Surfaces Using Lasers: A Review. Int. J. Adv. Manuf. Technol. 2022, 120, 103–135. DOI: 10.1007/s00170-022-08731-1.
  • Qi, H.; Chen, T.; Yao, L.; Zuo, T. Hydrophilicity Modification of Poly(Methyl Methacrylate) by Excimer Laser Ablation and Irradiation. Microfluid. Nanofluid. 2008, 5, 139–143. DOI: 10.1007/s10404-007-0234-8.
  • Kim, S. J.; Choi, B.; Kim, K. S.; Bae, W. J.; Hong, S. H.; Lee, J. Y.; Hwang, T.-K.; Kim, S. W. The Potential Role of Polymethyl Methacrylate as a New Packaging Material for the Implantable Medical Device in the Bladder. Biomed Res. Int. 2015, 2015, 852456.
  • Abd El-Ghani, W. M. A. Cranioplasty with Polymethyl Methacrylate Implant: solutions of Pitfalls. Egypt. J. Neurosurg. 2018, 33, 7. DOI: 10.1186/s41984-018-0002-y.
  • Frazer, R. Q.; Byron, R. T.; Osborne, P. B.; West, K. P. PMMA: An Essential Material in Medicine and Dentistry. J. Long. Term Eff. Med. Implants 2005, 15, 629–639. DOI: 10.1615/jlongtermeffmedimplants.v15.i6.60.
  • Teo, A. J. T.; Mishra, A.; Park, I.; Kim, Y.-J.; Park, W.-T.; Yoon, Y.-J. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomater. Sci. Eng. 2016, 2, 454–472. DOI: 10.1021/acsbiomaterials.5b00429.
  • Refahizadeh, M.; Majdabadi, A.; Parvin, P.; Silakhori, K.; Mortazavi, S. Z.; Mehdilo, A.; Aghaii, P. Angular Dependence of ArF Laser Induced Self-Aligning Microstructures on CR39. Opt. Mater. Express. 2015, 5, 1543–1549. DOI: 10.1364/OME.5.001543.
  • Refahizadeh, M.; Parvin, P.; Silakhori, K.; Mortazavi, S. Z.; Mehdilo, A. Fabrication of Self-Ruled Micro Grating on CR-39 Using ArF Laser-Induced Rippling. Laser Phys. 2017, 27, 066101. DOI: 10.1088/1555-6611/aa6be1.
  • Refahizadeh, M.; Parvin, P.; Silakhori, K.; Mortazavi, S. Z.; Reyhani, A.; Abolhosseini, S.; Hojati Rad, H.; Majdabadi, A. Formation of ArF Laser-Induced Self-Assembled Macrostructures on Poly Methyl Methacrylate and CR-39 Polymers. J. Laser Appl. 2017, 29, 022008. DOI: 10.2351/1.4980163.
  • Bassam, M. A.; Parvin, P.; Sajad, B.; Moghimi, A.; Coster, H. Measurement of Optical and Electrical Properties of Silicon Microstructuring Induced by ArF Excimer Laser at SF6 Atmosphere. Appl. Surf. Sci. 2008, 254, 2621–2628. DOI: 10.1016/j.apsusc.2007.09.106.
  • Parvin, P.; Refahizadeh, M.; Mortazavi, S. Z.; Silakhori, K.; Mahdiloo, A.; Aghaii, P. Regular Self-Microstructuring on CR39 Using High UV Laser Dose. Appl. Surf. Sci. 2014, 292, 247–255. DOI: 10.1016/j.apsusc.2013.11.125.
  • Jaleh, B.; Parvin, P.; Sheikh, N.; Ziaie, F.; Haghshenas, M.; Bozorg, L. Evaluation of Physico-Chemical Properties of Electron Beam-Irradiated Polycarbonate Film. Radiat. Phys. Chem. 2007, 76, 1715–1719. DOI: 10.1016/j.radphyschem.2007.03.008.
  • Roach, P.; Parker, T.; Gadegaard, N.; Alexander, M. R. A Bio-Inspired Neural Environment to Control Neurons Comprising Radial Glia, Substrate Chemistry and Topography. Biomater. Sci. 2013, 1, 83–93. DOI: 10.1039/c2bm00060a.
  • Liu, F.; Xu, J.; Wu, L.; Zheng, T.; Han, Q.; Liang, Y.; Zhang, L.; Li, G.; Yang, Y. The Influence of the Surface Topographical Cues of Biomaterials on Nerve Cells in Peripheral Nerve Regeneration: A Review. Stem Cells Int. 2021, 2021, 8124444–8124413.
  • Rajnicek, A.; Britland, S.; McCaig, C. Contact Guidance of CNS Neurites on Grooved Quartz: influence of Groove Dimensions, Neuronal Age and Cell Type. J. Cell Sci. 1997, 110, 2905–2913. DOI: 10.1242/jcs.110.23.2905.
  • Miller, C.; Shanks, H.; Witt, A.; Rutkowski, G.; Mallapragada, S. Oriented Schwann Cell Growth on Micropatterned Biodegradable Polymer Substrates. Biomaterials 2001, 22, 1263–1269. DOI: 10.1016/s0142-9612(00)00278-7.
  • Song, M.; Uhrich, K. E. Optimal Micropattern Dimensions Enhance Neurite Outgrowth Rates, Lengths, and Orientations. Ann. Biomed. Eng. 2007, 35, 1812–1820. DOI: 10.1007/s10439-007-9348-0.
  • Shi, X.; Xiao, Y.; Xiao, H.; Harris, G.; Wang, T.; Che, J. Topographic Guidance Based on Microgrooved Electroactive Composite Films for Neural Interface. Colloids Surf. B Biointerfaces 2016, 145, 768–776. DOI: 10.1016/j.colsurfb.2016.05.086.
  • Farrukh, A.; Zhao, S.; del Campo, A. Microenvironments Designed to Support Growth and Function of Neuronal Cells. Front. Mater. 2018, 5, 62. DOI: 10.3389/fmats.2018.00062.
  • Cai, S.; Wu, C.; Yang, W.; Liang, W.; Yu, H.; Liu, L. Recent Advance in Surface Modification for Regulating Cell Adhesion and Behaviors. Nanotechnol. Rev. 2020, 9, 971–989. DOI: 10.1515/ntrev-2020-0076.
  • Wang, J.-L.; Lin, Y.-C.; Young, T.-H.; Chen, M.-H. Far-Infrared Ray Radiation Promotes Neurite Outgrowth of Neuron-like PC12 Cells through AKT1 Signaling. J. Formos. Med. Assoc. 2019, 118, 600–610. DOI: 10.1016/j.jfma.2018.08.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.