44
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Preparation of hydrophobic acrylic intraocular lens materials using various crosslinking agents to reduce glistening

, &
Pages 1317-1326 | Received 07 Jul 2023, Accepted 14 Nov 2023, Published online: 24 Nov 2023

References

  • Gong, Q.; Zhao, Y.; Qian, T.; Wang, H.; Li, Z. Functionalized Hydrogels in Ophthalmic Applications: Ocular Inflammation, Corneal Injuries, Vitreous Substitutes and Intravitreal Injection. Mater. Des. 2022, 224, 111277. DOI: 10.1016/j.matdes.2022.111277.
  • Perez-Vives, C. Biomaterial Influence on Intraocular Lens Performance: An Overview. J. Ophthalmol. 2018, 2018, 1–17. DOI: 10.1155/2018/2687385.
  • Jaitli, A.; Roy, J.; Chatila, A.; Liao, J.; Tang, L. Role of Fibronectin and IOL Surface Modification in IOL: Lens Capsule Interactions. Exp. Eye Res. 2022, 221, 109135. DOI: 10.1016/j.exer.2022.109135.
  • Li, K.; Yu, L.; Ma, L.; Xia, J.; Peng, J.; Hu, P.; Liu, G.; Ye, J. Surface Modification of Commercial Intraocular Lens by Zwitterionic and Antibiotic-Loaded Coating for Preventing Postoperative Endophthalmitis. Colloids Surf. B Biointerfaces 2023, 222, 113093. DOI: 10.1016/j.colsurfb.2022.113093.
  • Werner, L. Intraocular Lenses: Overview of Designs, Materials, and Pathophysiologic Features. Ophthalmology 2021, 128, e74–e93. DOI: 10.1016/j.ophtha.2020.06.055.
  • Arboleda, A.; Arrieta, E.; Aguilar, M. C.; Sotolongo, K.; Nankivil, D.; Parel, J. A. Variations in Intraocular Lens Injector Dimensions and Corneal Incision Architecture after Cataract Surgery. J. Cataract. Refract. Surg. 2019, 45, 656–661. DOI: 10.1016/j.jcrs.2018.10.047.
  • Yildirim, T. M.; Schickhardt, S. K.; Wang, Q.; Friedmann, E.; Khoramnia, R.; Auffarth, G. U. Quantitative Evaluation of Microvacuole Formation in Five Intraocular Lens Models Made of Different Hydrophobic Materials. PLoS One 2021, 16, e0250860. DOI: 10.1371/journal.pone/0250860.
  • Tetz, M.; Jorgensen, M. R. New Hydrophobic IOL Materials and Understanding the Science of Glistenings. Curr. Eye Res. 2015, 40, 969–981. DOI: 10.3109/02713683.2014.978476.
  • Yildirim, T. M.; Fang, H.; Schickhardt, S. K.; Wang, Q.; Merz, P. R.; Auffarth, G. U. Glistening Formation in a New Hydrophobic Acrylic Intraocular Lens. BMC Ophthalmol. 2020, 20, 186. DOI: 10.1186/s12886-020-01430-z.
  • Eom, Y.; Lee, J. S.; Rhim, J. W.; Kang, S. Y.; Song, J. S.; Kim, H. M. A Simple Method to Shorten the Unfolding Time of Prehydrated Hydrophobic Intraocular Lens. Can. J. Ophthalmol. 2014, 49, 382–387. DOI: 10.1016/j.jcjo.2014.06.002.
  • Werner, L. Glistenings and Surface Light Scattering in Intraocular Lenses. J. Cataract. Refract. Surg. 2010, 36, 1398–1420. DOI: 10.1016/j.jcrs.2010.06.003.
  • Xiang, Y.; Jin, R.; Zhang, Y.; Li, K.; Liu, G.; Song, X.; Wang, Y.; Nie, Y. Foldable Glistening-Free Acrylic Intraocular Lens Biomaterials with Dual-Side Heterogeneous Surface Modification for Postoperative Endophthalmitis and Posterior Capsule Opacification Prophylaxis. Biomacromolecules 2021, 22, 3510–3521. DOI: 10.1021/acs.biomac.1c00582.
  • Rusciano, G.; Capaccio, A.; Pesce, G.; Sasso, A. Experimental Study of the Mechanisms Leading to the Formation of Glistenings in Intraocular Lenses by Raman Spectroscopy. Biomed. Opt. Express 2019, 10, 1870–1881. DOI: 10.1364/BOE.10.001870.
  • Maitra, J.; Shukla, V. K. Cross-Linking in Hydrogels – A Review. Am. J. Polym. Sci. 2014, 4, 25–31. DOI: 10.5923/j.ajps.20140402.01.
  • Wong, R. S. H.; Ashton, M.; Dodou, K. Effect of Crosslinking Agent Concentration on the Properties of Unmedicated Hydrogels. Pharmaceutics 2015, 7, 305–319. DOI: 10.3390/pharmaceutics7030305.
  • Arima, T.; Hamada, T.; McCabe, J. F. The Effects of Cross-Linking Agents on Some Properties of HEMA-Based Resins. J. Dent. Res. 1995, 74, 1597–1601. DOI: 10.1177/00220345950740091501.
  • Mohammed, A. H.; Ahmad, M. B.; Ibrahim, N. A.; Zainuddin, N. Effect of Crosslinking Concentration on Properties of 3-(Trimethoxysilyl) Propyl Methacrylate/N-Vinyl Pyrrolidone Gels. Chem. Cent. J. 2018, 12, 15. DOI: 10.1186/s13065-018-0379-4.
  • Kim, D.; Lee, D. Y.; Lee, K.; Choe, S. Effect of Crosslinking Agents on the Morphology of Polymer Particles Produced by One-Step Seeded Polymerization. Macromol. Res. 2009, 17, 250–258. DOI: 10.1007/BF03218688.
  • Kim, T. H.; Song, K. C. Effect of Types of Hydrophilic Acrylic Monomers in Reducing Glistenings of Hydrophobic Acrylic Intraocular Lenses. Opt. Mater. 2021, 119, 111401. DOI: 10.1016/j.optmat.2021.111401.
  • Weindler, J. N.; Łabuz, G.; Yildirim, T. M.; Tandogan, T.; Khoramnia, R.; Auffarth, G. U. The Impact of Glistenings on the Optical Quality of a Hydrophobic Acrylic Intraocular Lens. J. Cataract. Refract. Surg. 2019, 45, 1020–1025. DOI: 10.1016/j.jcrs.2019.01.025.
  • Song, L.; Hu, W.; Zhang, H.; Wang, G.; Yang, H.; Zhu, S. In Vitro Evaluation of Chemically Cross-Linked Shape-Memory Acrylate-Methacrylate Copolymer Networks as Ocular Implants. J. Phys. Chem. B 2010, 114, 7172–7178. DOI: 10.1021/jp100876c.
  • Kim, T. H.; Song, K. C. Low-Temperature Preparation of Superhydrophilic Coatings Using Tetraethoxysilane and Colloidal Silica by Sol-Gel Method. Colloids Surf. A 2022, 647, 129105. DOI: 10.1016/j.colsurfa.2022.129105.
  • Miyata, A.; Yaguchi, S. Equilibrium Water Content and Glistenings in Acrylic Intraocular Lenses. J. Cataract. Refract. Surg. 2004, 30, 1768–1772. DOI: 10.1016/j.jcrs.2003.12.038.
  • Jagger, R. G.; Huggett, R. The Effect of Cross-Linking on Sorption Properties of a Denture-Base Material. Dent. Mater. 1990, 6, 276–278. DOI: 10.1016/S0109-5641(05)80010-7.
  • Turner, D. T.; Abell, A. K. Water Sorption of Poly(Methyl Methacrylate): 2. Effects of Crosslinks. Polymer 1987, 28, 297–302. DOI: 10.1016/0032-3861(87)90421-6.
  • Tighe, B. J.; Mann, A. Biomaterials and Regenerative Medicine in Ophthalmology, 2nd ed.; Woodhead Publishing: Duxford/UK, 2016; p 75.
  • Kato, K.; Nishida, M.; Yamane, H.; Nakamae, K.; Tagami, Y.; Tetsumoto, K. Glistening Formation in an AcrySof Lens Initiated by Spinodal Decomposition of the Polymer Network by Temperature Change. J. Cataract. Refract. Surg. 2001, 27, 1493–1498. DOI: 10.1016/s0886-3350(01)00895-1.
  • Jung, G. B.; Jin, K. H.; Park, H. K. Physicochemical and Surface Properties of Acrylic Intraocular Lenses and Their Clinical Significance. J. Pharm. Investig. 2017, 47, 453–460. DOI: 10.1007/s40005-017-0323-y.
  • Bozukova, D.; Pagnoulle, C.; Jerome, C. Biomechanical and Optical Properties of 2 New Hydrophobic Platforms for Intraocular Lenses. J. Cataract. Refract. Surg. 2013, 39, 1404–1414. DOI: 10.1016/j.jcrs.2013.01.050.
  • Song, L.; Hu, W.; Wang, G.; Zhang, H.; Niu, G.; Cao, H.; Yang, H.; Zhu, S. Synthesis and Characterization of Shape Memory (Meth)Acrylate Co-Polymers and Their Cytocompatibility in Vitro. J. Biomater. Sci. Polym. Ed. 2011, 22, 1–17. DOI: 10.1163/092050609x12567412849136.
  • Laredo, W. R. Hydrophobic Acrylic Intraocular Lens Materials. U.S. Patent 8,557, 892 B2, 2013.
  • Haldar, R. S.; Chauhan, R.; Kapoor, K.; Niyogi, U. K. Development of a Hydrophobic Polymer Composition with Improved Biocompatibility for Making Foldable Intraocular Lenses. Opt. Mater. 2014, 36, 1165–1176. DOI: 10.1016/j.optmat.2014.02.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.