67
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, characterization, sorption, and antibacterial properties of a new polystyrene-supported o-hydroxyacetophenonediethylenetriamine polymer

, , , , , , , & show all
Pages 1327-1336 | Received 12 Apr 2023, Accepted 22 Nov 2023, Published online: 15 Dec 2023

References

  • Yahya, A.; Mohamed, S. K.; Mohamed, A. G. Environmental Pollution by Heavy Metals in the Aquatic Ecosystems of Egypt. J. Toxicol. 2018, 3, 555–603. DOI: 10.19080/OAJT.2018.03.555603.
  • Thuy, C. N.; Paripurnanda, L.; Tien, V. N.; Jaya, K.; Ravi, N.; Saravanamuthu, V. Adsorptive Removal of Five Heavy Metals from Water Using Blast Furnace Slag and Fly Ash. Environ. Sci. Pollut. Res. 2018, 25, 2870–7235. DOI: 10.1007/s11356-017-9610-4.
  • Kanwal, R.; Fiza, F.; Iqra, W.; Muhammad, S.; Hamid, A. Prevalence of Exposure of Heavy Metals and Their Impact on Health Consequences. J. Cell. Biochem. 2018, 119, 157–184. DOI: 10.1002/jcb.26234.
  • Zhang, C.; Chen, L.; Tan, L.; Zheng, X.; Wang, Y. Poly(Dopamine)-Assisted Preparation of Star Poly(Ethylene Glycol)-Based Coatings: A Detailed Study of Their Protein Resistance and Application in CE. J. React. Funct. Polym. 2015, 93, 190–201. DOI: 10.1016/j.reactfunctpolym.2015.05.009.
  • Muthaiah, S.; Bhatia, A.; Kannan, M. Stability of Metal Complexes. In Stability and Applications of Coordination Compounds; Srivastva. A. N.; Ambedkar. B. B., Eds.; Intech Open: London, UK, 2020, Chap. 6, p 176.
  • Charef, N.; Benmaamar, Z.; Arrar, L.; Baghiani, A.; Zalloum, R. M.; Mubarak, M. S. Preparation of a New Polystyrene Supported Ethylenediaminediacetic Acid Resin and Its Sorption Behavior toward Divalent Metal Ions. Solvent Extr. Ion Exch. 2012, 30, 101–112. DOI: 10.1080/07366299.2011.581070.
  • Ayob, S.; Othman, N.; Hamood Altowayti, W. A.; Khalid, F.; Bakar, N.; Tahir, M.; Soedjono, E. S. A Review on Adsorption of Heavy Metals from Wood-Industrial Wastewater by Oil Palm Waste. J. Ecol. Eng. 2021, 22, 249–265. DOI: 10.12911/22998993/132854.
  • Younes, A. A.; El-Maghrabi, H. H. Removal of Lead Ions from Wastewater Using Novel Schiff-Base Functionalized Solid-Phase Adsorbent. Sep. Sci. Technol. 2019, 55, 1589–1602. DOI: 10.1080/01496395.2019.1604758.
  • Danjani, A. G.; Salisu, A. A.; Usman, A. H. Preparation and Characterization of Dialdehyde 2, 3-Diaminopyridine Starch Chelating Polymer and Its Sorption Potential for Cd(II), Cu(II) and Ni(II) Ions in Aqueous Media. Bayero J. Pure App. Sci. 2017, 9, 174–178. DOI: 10.4314/bajopas.v9i2.32.
  • Elhalawany, N.; Abdel Baseer, R.; Mostafa, A. B.; Rabei, A. G. New Efficient Chelating Polymers Based on Plastic Waste for Removal of Toxic Heavy Metal Pollutants. J. Elastomers Plast. 2016, 49, 1–17. DOI: 10.1177/0095244316673134.
  • Liu, Y.; Feng, Y.; Wang, R.; Jiao, T.; Li, J.; Rao, Y.; Zhang, Q.; Bai, Z.; Peng, Q. Self-Assembled Naphthylidene-Containing Schiff Base Anchored Polystyrene Nanocomposites Targeted for Selective Cu(II) Ion Removal from Wastewater. ACS Omega 2019, 4, 12098–12106. DOI: 10.1021/acsomega.9b0120.
  • Saravanan, R.; Ravikumar, L. Cellulose Bearing Schiff Base and Carboxylic Acid Chelating Groups a Low Cost and Green Adsorbent for Heavy Metal Ion Removal from Aqueous Solution. Water Sci. Technol. 2016, 74, 1780–1792. DOI: 10.2166/wst.2016.296.
  • Ehteshami, G.; Porath, J.; Guzmán, R. Interactions and Applications of Soluble Heterobifunctional Affinity Chelating Polymers in Immobilized Metal Affinity Chromatography. J. Mol. Recognit. 1996, 9, 733–737. DOI: 10.1002/(SICI)1099-1352(199634/12)9:5/6<733::AID-JMR331>3.0.CO;2-F.
  • Kumar, D.; Kumar, A.; Dass, D. Syntheses, Spectroscopic and Magnetic Properties of Polystyrene-Anchored Coordination Compounds of Thiazolidinone. Bull. Chem. Soc. Ethiop. 2014, 28, 29–36. DOI: 10.4314/bcse.v28i1.4.
  • Sonseca, A. S.; Madani, S.; Rodríguez, G.; Hevilla, V.; Echeverría, C.; Fernández-García, M.; Muñoz-Bonilla, A.; Charef, N.; López, D. Multifunctional PLA Blends Containing Chitosan Mediated Silver Nanoparticles: Thermal, Mechanical, Antibacterial, and Degradation Properties. Nanomaterials (Basel) 2020, 10, 22. DOI: 10.3390/nano10010022.
  • Sonseca, A.; Madani, S.; Muñoz-Bonilla, A.; Fernández-García, M.; Peponi, L.; Leonés, A.; Rodríguez, G.; Echeverría, C.; López, D. Biodegradable and Antimicrobial PLA–OLA Blends Containing Chitosan-Mediated Silver Nanoparticles with Shape Memory Properties for Potential Medical Applications. Nanomaterials 2020, 10, 1065. DOI: 10.3390/nano10061065.
  • Cegłowski, M.; Schroeder, G. Preparation of Porous Resin with Schiff Base Chelating Groups for Removal of Heavy Metal Ions from Aqueous Solutions. J. Chem. Eng. 2015, 263, 402–411. DOI: 10.1016/j.cej.2014.11.047.
  • Nasrollahzadeh, M.; Motahharifar, N.; Ghorbannezhad, F.; Soheili Bidgoli, N. S.; Baran, T.; Varma, R. S. Recent Advances in Polymer Supported Palladium Complexes as (Nano)Catalysts for Sonogashira Coupling Reaction. Mol. Catal. 2020, 480, 110645. DOI: 10.1016/j.mcat.2019.110645.
  • Abu-Dief, A. M.; Mohamed, I. M. A. A Review on Application of Transition Metal Complexes Incorporating Schiff Bases. J. Basic Appl. Sci. 2015, 4, 119–133. DOI: 10.1016/j.bjbas.2015.05.004.
  • Madani, S.; Charef, N.; Hellal, A.; Daniel, L. G.; Marta, F. G.; Araar, L.; Mubarak, M. S. Synthesis, Density Functional Theory Studies, and Sorption Properties toward Some Divalent Heavy Metal Ions of a New Polystyrene‐Supported 4‐(5‐Mercapto‐1, 3, 4‐Thiadiazol‐2‐Ylimino) Pentan‐2‐One Polymer. J. Appl. Polym. Sci. 2019, 137, 1–9. DOI: 10.1002/app.48289.
  • Ghosh, P.; Dey, K. S.; Ara, H. M.; Karim, K.; Islam, N. A. B. M. A Review on Synthesis and Versatile Applications of Some Selected Schiff Bases with Their Transition Metal Complexes. Egypt. J. Chem. 2019, 0, 0–0. DOI: 10.21608/ejchem.2019.13741.1852.
  • Hassan, R.; Arida, H.; Montasser, M.; Abdel Latif, N. Synthesis of New Schiff Base from Natural Products for Remediation of Water Pollution with Heavy Metals in Industrial Areas. J. Chem. 2013, 2013, 1–10. DOI: 10.1155/2013/240568.
  • Gupta, K. C.; Sutar, A. K.; Lin, C. C. Polymer-Supported Schiff Base Complexes in Oxidation Reactions. Coord. Chem. Rev. 2009, 253, 1926–1946. DOI: 10.1016/j.ccr.2009.03.019.
  • Kumar, V. G. S.; Mathew, B. Effect of the Nature and Degree of Crosslinking on the Catalase-Like Activity of Polystyrene-Supported Schiff Base-Metal Complexes. J. Appl. Polym. Sci. 2004, 92, 1271–1278. DOI: 10.1002/app.20072.
  • Bozkır, E.; Sarı, N.; Öğütcü, H. Polystyrene Containing Carbinolamine/Azomethine Potentially Useful as Antimicrobial Agent: Synthesis and Biological Evaluation. J. Inorg. Organomet. Polym. 2012, 22, 1146–1155. DOI: 10.1007/s10904-012-9697-5.
  • Nath, N.; Pradhan, H. C.; Maharana, T.; Sutar, A. K. Polymer Supported Schiff Base Iron Complex for Epoxidation of Trans-Stilbene. Int. J. Chem. Eng. Appl. 2017, 8, 127–130. DOI: 10.18178/ijcea.2017.8.2.643.
  • Nasrollahzadeh, M.; Nezafat, Z.; Sadat, N.; Bidgoli, S.; Shafiei, N. Recent Progress in Polymer-Supported Cobalt Complexes/Nanoparticles for Sustainable and Selective Oxidation Reactions. Mol. Catal. 2020, 484, 110775. DOI: 10.1016/j.mcat.2020.110775.
  • Charef, N.; Arrar, L.; Ourari, A.; Zalloum, R. M.; Mubarak, M. S. Synthesis and Chelating Properties of Polystyrene Supported Schiff Base (N,N-Disalicylidenepropylenetriamine) Resin toward Some Divalent Metal Ions. J. Macromol. Sci. Part A: Pure Appl. Chem. 2010, 47, 177–184. DOI: 10.1080/10601320903458796.
  • Ahamad, T.; Nahid, N.; Parveen, S. Synthesis, Characterization and anti-Microbial Studies of a Newly Developed Polymeric Schiff Base and Its Metal-Polychelates. J. Coord. Chem. 2008, 61, 1963–1972. DOI: 10.1080/00958970701795698.
  • Xiong, C.; Yao, C. Preparation and Application of Acrylic Acid Grafted Polytetrafluoroethylene Fiber as a Weak Acid Cation Exchanger for Adsorption of Er(III). J. Chem. Eng. 2009, 155, 1125–1132. DOI: 10.1016/j.jhazmat.2009.05.089.
  • Abeer, A. M.; Said, I. B.; Hayssam, M. A.; Mervat, E. H.; Mohamed, Z. S.; Nader, A. A. Phytochemical Compounds of Branches from P. halepensis Oily Liquid Extract and S. terebinthifolius Essential Oil and Their Potential Antifungal Activity. Processes 2020, 8, 330. DOI: 10.3390/pr8030330.
  • Shah, T. B.; Patel, H. S.; Dixit, R. B.; Dixit, B. C. Chelates of Poly(8-Hydroxyquinoline-Dimethylolurea). Int. J. Polym. Mater. Polym. Biomater. 2007, 56, 729–741. DOI: 10.1080/00914030601100748.
  • Naseem, K.; Farooqi, Z. H.; Begum, R.; Ghufran, M.; Rehman, M. Z.; Najeeb, J.; Ahmad Irfan, A.; Al-Sehemi, A. G. Poly(N-Isopropylmethacrylamide-Acrylic Acid) Microgels as Adsorbent for Removal of Toxic Dyes from Aqueous Medium. J. Mol. Liq. 2018, 268, 229–238. DOI: 10.1016/j.molliq.2018.07.039.
  • Ahmadi, A.; Gatabi, G.; Mohamadnia, Z. Preparation and Characterization of Zn(II) Ion-Imprinted Polymer Based on Salicylic Acrylate for Recovery of Zn(II) Ions. Polímeros 2016, 26, 242–248. DOI: 10.1590/0104-1428.2322.
  • Namazi, H.; Heydari, A.; Pourfarzolla, A. Synthesis of Glycoconjugated Polymer Based on Polystyrene and Nanoporous β-Cyclodextrin to Remove Copper (II) from Water Pollution. Int. J. Polym. Mater. 2013, 63, 1–6. DOI: 10.1080/00914037.2013.769240.
  • Rahangdale, S. S.; Kamdi, D. D.; Khobragade, J. D.; Gurnule, W. B. Separation of Toxic Metals Ions from Waste Water Using Pyrogallol-Biuret-Formaldehyde Copolymer Resin. IJRBAT. 2020, 3, 274–283. Doiorg/10293692020.03.i.0046 DOI: 10.29369/ijrbat.2020.03.I.0046.
  • Chen, Y.; Zhao, W.; Wang, H.; Li, Y.; Li, C. Preparation of Novel Polyamine-Type Chelating Resin with Hyperbranched Structures and Its Adsorption Performance. R Soc. Open Sci. 2018, 5, 171665. DOI: 10.1098/rsos.171665.
  • Wróbel, A. M. Gas Chromatography/Mass Spectrometry Study of the Low-Molecular-Weight Fraction of Plasma-Polymerized N,N'-Bis-(Dimethylsilyl)Tetramethylcyclodisilazane. J. Macro. Sci, Part A: Pure Appl. Chem. 1989, 26, 743–759. DOI: 10.1080/00222338908052008.
  • Samal, S.; Das, R. R.; Acharya, S.; Mohapatra, P.; Dey, R. K. A Comparative Study on Metal Ion Uptake Behavior of Chelating Resins Derived from the Formaldehyde-Condensed Phenolic Schiff Bases of 4,4′-Diaminodiphenylsulfone and Hydroxybenzaldehydes. Polym. Plast. Technol. Eng. 2002, 41, 229–246. DOI: 10.1081/PPT-120002565.
  • Tikhomirova, T. I.; Fadeeva, V. I.; Kudryavtsev, G. V.; Nesterenko, P. N.; Ivanov, V. M.; Savitchev, A. T.; Smirnova, N. S. Sorption of Noble-Metal Ions on Silica with Chemically Bonded Nitrogen-Containing Ligands. Talanta 1991, 38, 267–274. DOI: 10.1016/0039-9140(91)80046-3.
  • Darren, P. R.; John, D. W.; Bruce, B. J. Anomalous Adsorption of Copper(II) on Goethite. J. Colloid Interface Sci. 1996, 184, 564–569. DOI: 10.1006/jcis.1996.0652.
  • Ali El-Dissouky, A.; Elassar, A. Z.; Bu-Olian, A. Z. Complex Formation, Metal Uptake, and Sorption Kinetics of a Chemically Modified Chlorosulfonated Polystyrene with Aminosalicylic Acid. J. Chem. Eng. Data 2011, 56, 1827–1839. DOI: 10.1021/je1008087.
  • Nostro, A.; Germanò, M. P.; D'angelo, V.; Marino, A.; Cannatelli, M. A. Extraction Methods and Bioautography for Evaluation of Medicinal Plant Antimicrobial Activity. Lett. Appl. Microbiol. 2000, 30, 379–384. DOI: 10.1046/j.1472-765x.2000.00731.x.
  • Tadeg, H.; Mohammed, E.; Asres, K.; Gebre-Mariam, T. Antimicrobial Activities of Some Selected Traditional Ethiopian Medicinal Plants Used in the Treatment of Skin Disorders. J. Ethnopharmacol. 2005, 100, 168–175. DOI: 10.1016/j.jep.2005.02.031.
  • Karakücük, A.; Kocabas, E.; Sirit, A.; Memon, S.; Yilmaz, M.; Roundhill, D. M. Polymer Supported Calix[4]Arene Schiff Bases: A Novel Chelating Resin for Hg2+ and Dichromate Anions. J. Macro. Sci, Part A: Pure Appl. Chem. 2005, 42, 691–704. DOI: 10.1081/MA-200058629.
  • Rahal, J. J. Novel Antibiotic Combinations against Infections with Almost Completely Resistant Pseudomonas aeruginosa and Acinetobacter Species. Clin. Infect. Dis. 2006, 43, S95–S99. DOI: 10.1086/504486.
  • Moulana, Z.; Ghaemi, M.; Qasemi, S.; Ghassemi, K.; Hasanjani Roushan, M. R.; Tashakkorian, H.; Asgharpour, F.; Bazzar, M. Synthesis, Antibacterial Evaluation and Survey on the Thermophysical Characteristics of Novel Medically Applicable Polyamides Containing Pharmaceutically Outstanding Triazole Moieties. J. Macromol. Sci, Part A: Pure Appl. Chem. 2017, 54, 30–39. DOI: 10.1080/10601325.2017.1250312.
  • Esir, İ.; Mükerrem, K.; Fatih, P.; Selahattin, S. Synthesis and Antimicrobial Activity of New Schiff Bases Having the –SiOR Group (R = CH3orCH2CH3), and Their Transition Metal Complexes. Transit. Met. Chem. 2005, 30, 1042–1047. DOI: 10.1007/s11243-005-6311-5.
  • Patel, M. M.; Kapadia, M. A.; Patel, G. P.; Joshi, J. D. Synthesis, Characterization, Ion-Exchange and Antimicrobial Study of Poly[(2-Hydroxy-4-Methoxy Benzophenone) Ethylene] Resin and Its Polychelates with Lanthanides(III). React. Funct. Polym. 2007, 67, 746–757. DOI: 10.1016/j.reactfunctpolym.2007.05.005.
  • Chohan, Z. H. Synthesis and Biological Properties of Cu(II) Complexes with 1,1′‐Disubstituted Ferrocenes. Synth. React. Inorg. Met. Org. Chem. 2004, 34, 833–846. DOI: 10.1081/SIM-120037510.
  • Chohan, Z. H.; Supuran, C. T.; Scozzafa, A. Metalloantibiotics: Synthesis and Antibacterial Activity of Cobalt(II), Copper(II), Nickel(II) and Zinc(II) Complexes of Kefzol. J. Enzyme Inhib. Med. Chem. 2004, 19, 79–84. DOI: 10.1080/14756360310001624939.
  • Kumar, D.; Chadda, S.; Sharma, J.; Surain, P. Syntheses, Spectral Characterization, and Antimicrobial Studies on the Coordination Compounds of Metal Ions with Schiff Base Containing Both Aliphatic and Aromatic Hydrazide Moieties. Bioinorg. Chemi. Appl. 2013, 2013, 1–10. DOI: 10.1155/2013/981764.
  • Rîmbu, C.; Danac, R.; Pui, A. Antibacterial Activity of Pd(II) Complexes with Salicylaldehyde-Amino Acids Schiff Bases Ligands. Chem. Pharm. Bull. (Tokyo) 2014, 62, 12–15. DOI: 10.1248/cpb.c12-01087.
  • Neelakantan, M. A.; Marriappan, S. S.; Dharmaraja, J.; Jeyakumar, T.; Muthukumaran, K. Spectral, XRD, SEM and Biological Activities of Transition Metal Complexes of Polydentate Ligands Containing Thiazole Moiety. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2008, 71, 628–635. DOI: 10.1016/j.saa.2008.01.023.
  • Bagihalli, G. B.; Patil, S. A.; Badami, P. S. Synthesis, Physicochemical Investigation and Biological Studies of Zinc(II) Complexes with 1,2,4-Triazole Schiff Bases. J. Iran. Chem. Soc. 2009, 6, 259–270. DOI: 10.1007/BF03245833.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.