182
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Support and adic finiteness for complexes

&
Pages 2569-2592 | Received 23 Jul 2014, Published online: 07 Nov 2016

References

  • Alonso Tarrío, L., Jeremías López, A., Lipman, J. (1997). Local homology and cohomology on schemes. Ann. Sci. École Norm. Sup. (4) 30(1):1–39.
  • Apassov, D. (1999). Homological Dimensions Over Differential Graded Rings. Complexes and Differential Graded Modules, Ph.D. dissertation, Lund University, pp. 25–39.
  • Avramov, L. L. (1998). Infinite Free Resolutions. Six lectures on commutative algebra (Bellaterra, 1996), Progr. Math., vol. 166, Basel: Birkhäuser, pp. 1–118.
  • Avramov, L. L., Foxby, H.-B. (1991). Homological dimensions of unbounded complexes. J. Pure Appl. Algebra 71:129–155.
  • Avramov, L. L., Foxby, H.-B. (1992). Locally Gorenstein homomorphisms. Amer. J. Math. 114(5):1007–1047.
  • Avramov, L. L., Foxby, H.-B., Halperin, S. Differential graded homological algebra, in preparation.
  • Beck, K., Sather-Wagstaff, S. (2014). A somewhat gentle introduction to differential graded commutative algebra. In: Connections Between Algebra, Combinatorics, and Geometry, Proceedings in Mathematics and Statistics, vol. 76, New York, Heidelberg, Dordrecht, London: Springer, pp. 3–99.
  • Benson, D., Iyengar, S. B., Krause, H. (2008). Local cohomology and support for triangulated categories. Ann. Sci. Éc. Norm. Supér. (4) 41(4):573–619.
  • Benson, D., Iyengar, S. B., Krause, H. (2012). Colocalizing subcategories and cosupport. J. Reine Angew. Math. 673:161–207.
  • Chen, X.-W., Iyengar, S. B. (2010). Support and injective resolutions of complexes over commutative rings. Homology, Homotopy Appl. 12(1):39–44.
  • Delfino, D., Marley, T. (1997). Cofinite modules and local cohomology. J. Pure Appl. Algebra 121(1):45–52.
  • Dwyer, W. G., Greenlees, J. P. C. (2002). Complete modules and torsion modules. Amer. J. Math. 124(1):199–220.
  • Enochs, Edgar (1997). On invariants dual to the Bass numbers. Proc. Amer. Math. Soc. 125(4):951–960.
  • Félix, Y., Halperin, S., Thomas, J.-C. (2001). Rational Homotopy Theory. Graduate Texts in Mathematics, vol. 205. New York: Springer-Verlag.
  • Foxby, H.-B. Hyperhomological algebra & commutative rings. Lecture Notes.
  • Foxby, H.-B. (1979). Bounded complexes of flat modules. J. Pure Appl. Algebra 15(2):149–172.
  • Foxby, H.-B. (1982). Complexes of Injective Modules. Commutative algebra: Durham 1981 (Durham, 1981), London Math. Soc. Lecture Note Ser., vol. 72, Cambridge: Cambridge Univ. Press, pp. 18–31.
  • Foxby, H.-B., Iyengar, S. (2003). Depth and amplitude for unbounded complexes. Commutative algebra. Interactions with Algebraic Geometry, Contemp. Math., vol. 331, Providence, RI: Amer. Math. Soc., pp. 119–137.
  • Frankild, A. (2003). Vanishing of local homology. Math. Z. 244(3):615–630.
  • Frankild, A., Iyengar, S., Jørgensen, P. (2003). Dualizing differential graded modules and Gorenstein differential graded algebras. J. London Math. Soc. (2) 68(2):288–306.
  • Gelfand, S. I., Manin, Y. I. (1996). Methods of Homological Algebra. Berlin: Springer-Verlag.
  • Greenlees, J. P. C., May J. P. (1992). Derived functors of I-adic completion and local homology. J. Algebra 149(2): 438–453.
  • Hartshorne, R. (1966). Residues and Duality, Lecture Notes in Mathematics, No. 20, Berlin: Springer-Verlag.
  • Hartshorne, R. (1967). Local cohomology, A seminar given by A. Grothendieck, Harvard University, Fall, vol. 1961, Berlin: Springer-Verlag.
  • Hartshorne, R. (1969/1970). Affine duality and cofiniteness. Invent. Math. 9:145–164.
  • Kawasaki, K.-i. (2011). On a category of cofinite modules which is Abelian. Math. Z. 269(1–2):587–608.
  • Kawasaki, K.-i. (2013). On a characterization of cofinite complexes. Addendum to “On a category of cofinite modules which is Abelian”. Math. Z. 275(1–2):641–646.
  • Kubik, B., Leamer, M. J., Sather-Wagstaff, S. (2014). Homology of Artinian and mini-max modules, II. J. Algebra 403:229–272.
  • Lipman, J. (2002). Lectures on local cohomology and duality, Local cohomology and its applications (Guanajuato, 1999), Lecture Notes in Pure and Appl. Math., vol. 226, New York: Dekker, pp. 39–89.
  • Melkersson, Leif (2005). Modules cofinite with respect to an ideal. J. Algebra 285(2):649–668.
  • Nasseh, S., Sather-Wagstaff, S. (2012). A local ring has only finitely many semidualizing complexes up to shift-isomorphism, preprint, arXiv:1201.0037.
  • Nasseh, S., Sather-Wagstaff, S. (2013). Liftings and quasi-liftings of DG modules. J. Algebra 373:162–182.
  • Porta, M., Shaul, L., Yekuiteli, A. (2015). Cohomologically cofinite complexes. J. Commun. Algebra 43(2):597–615.
  • Porta, M., Shaul, L., Yekuiteli, A. (2014). On the homology of completion and torsion. Algebr. Represent. Theory 17(1):31–67.
  • Sather-Wagstaff, S., Wicklein, R. (2016). Extended local cohomology and local homology. J. Algebr. Represent. Theory 19(5):1217–1238.
  • Shaul, L. (2014). Tensor product of dualizing complexes over a field. preprint arXiv:1412.3759.
  • Verdier, J.-L. Catégories dérivées, SGA 4½, Springer-Verlag, Berlin, 1977, Lecture Notes in Mathematics, Vol. 569, pp. 262–311.
  • Verdier, J.-L. Des catégories dérivées des catégories abéliennes (1996), no. 239, xii+253 pp. (1997), With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis.
  • Yekutieli, A. (2015). A separated cohomologically complete module is complete. J. Commun. Algebra 43(2):616–622.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.