90
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A Note on normalizations of orbit closures

Pages 3716-3723 | Received 05 Jan 2016, Published online: 10 Feb 2017

References

  • Bürgisser, P., Ikenmeyer, C. (2011). Geometric complexity theory and tensor rank [extended abstract]. In: STOC’11—Proceedings of the 43rd ACM Symposium on Theory of Computing. New York: ACM, pp. 509–518. Conference held at June 6–8, 2011.
  • Bürgisser, P., Ikenmeyer, C. (2015). Fundamental invariants of orbit closures (arXiv 1511.02927).
  • Dolgachev, I., Kanev, V. (1993). Polar covariants of plane cubics and quartics. Adv. Math. 98(2):216–301.
  • Fulton, W. (1997). Young Tableaux. London Mathematical Society Student Texts, Vol. 35. Cambridge: Cambridge University Press, pp. x + 260 (With applications to representation theory and geometry).
  • Görtz, U., Wedhorn, T. (2010). Algebraic Geometry I. Advanced Lectures in Mathematics. Wiesbaden: Vieweg + Teubner, pp. viii + 615 (Schemes with examples and exercises).
  • Humphreys, J. E. (1975.) Linear Algebraic Groups. Graduate Texts in Mathematics, Vol. 21. New York-Heidelberg: Springer-Verlag.
  • Iarrobino, A., Kanev, V. (1999). Power Sums, Gorenstein Algebras, and Determinantal Loci. Lecture Notes in Mathematics, Vol. 1721. Berlin: Springer-Verlag, pp. xxxii + 345.
  • Ikenmeyer, C. (2012). Geometric Complexity Theory, Tensor Rank, and Littlewood–Richardson Coefficients. Dissertation, Universität Paderborn.
  • Ikenmeyer, C. (2016). Private communication.
  • Kogan, I. A., Maza, M. M. (2002). Computation of canonical forms for ternary cubics. In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation (electronic). New York: ACM, pp. 151–160.
  • Kraft, H. (1984). Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics, D1. Braunschweig: Friedr. Vieweg & Sohn.
  • Kumar, S. (2013). Geometry of orbits of permanents and determinants. Comment. Math. Helv. 88(3):759–788.
  • Landsberg, J. M. (2012). Tensors: Geometry and Applications. Graduate Studies in Mathematics, Vol. 128. Providence, RI: American Mathematical Society.
  • Landsberg, J. M. (2015). Geometric complexity theory: An introduction for geometers. Ann. Univ. Ferrara 61(1):65–117.
  • Mulmuley, K. D., Sohoni, M. (2001). Geometric complexity theory. I. An approach to the P vs. NP and related problems. SIAM J. Comput. 31(2):496–526.
  • Sturmfels, B. (1993). Algorithms in Invariant Theory. Texts and Monographs in Symbolic Computation. Vienna: Springer-Verlag, pp. vi + 197.
  • Tauvel, P., Yu, R. W. T. (2005). Lie Algebras and Algebraic Groups. Springer Monographs in Mathematics. Berlin: Springer-Verlag.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.