142
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A combinatorial approach to root multiplicities of rank 2 hyperbolic Kac–Moody algebras

, &
Pages 4785-4800 | Received 30 Nov 2016, Published online: 13 Apr 2017

References

  • Berman, S., Moody, R. V. (1979). Lie algebra multiplicities. Proc. Am. Math. Soc. 76(2):223–228.
  • Borcherds, R. E. (1990). The monster Lie algebra. Adv. Math. 83:30–47.
  • Carbone, L., Freyn, W., Lee, K.-H. (2014). Dimensions of Imaginary Root Spaces of Hyperbolic Kac–Moody Algebras. Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics, Contemporary Mathematics, Vol. 623. Providence, RI: American Mathematical Society, pp. 23–40.
  • Feingold, A. J. (1980). A hyperbolic GCM Lie algebra and the Fibonacci numbers. Proc. Am. Math. Soc. 80(3): 379–385.
  • Feingold, A. J., Frenkel, I. B. (1983). A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2. Math. Ann. 263(1):87–144.
  • Frenkel, I. B. (1985). Representations of Kac–Moody Algebras and Dual Resonance Models. Applications of group theory in physics and mathematical physics (Chicago, 1982). Lectures in Application Mathematics, Vol. 21. Providence, RI: American Mathematical Society, pp. 325–353.
  • Garland, H., Lepowsky, J. (1976). Lie algebra homology and the Macdonald–Kac formulas. Invent. Math. 34(1):37–76.
  • Kac, V. G. (1990). Infinite-Dimensional Lie Algebras. 3rd ed. Cambridge: Cambridge University Press.
  • Kac, V. G., Moody, R. V., Wakimoto, M. (1988). On E10, Differential Geometrical Methods in Theoretical Physics (Como, 1987), NATO Advanced Science Institute Series C Mathematics Physics Science, Vol. 250. Dordrecht: Kluwer Academic Publisher, pp. 109–128.
  • Kang, S.-J. (1993). Kac–Moody lie algebras, spectral sequences, and the witt formula. Trans. Am. Math. Soc. 339(2):463–493.
  • Kang, S.-J. (1993). Root multiplicities of the hyperbolic Kac–Moody Lie algebra HA1(1). J. Algebra 160(2):492–523.
  • Kang, S.-J. (1994). On the hyperbolic Kac–Moody lie algebra HA1(1). Trans. Am. Math. Soc. 341(2):623–638.
  • Kang, S.-J. (1994). Root multiplicities of Kac–Moody algebras. Duke Math. J. 74(3):635–666.
  • Kang, S.-J., Melville, D. J. (1995). Rank 2 symmetric hyperbolic Kac–Moody algebras. Nagoya Math. J. 140:41–75.
  • Kim, H. H., Lee, K.-H. (2013). Root multiplicities of hyperbolic Kac–Moody algebras and Fourier coefficients of modular forms. Ramanujan J. 32:329–352.
  • Lee, K., Li, L., Zelevinsky, A. (2014). Greedy elements in rank 2 cluster algebras. Selecta Math. (N.S.) 20(1):57–82.
  • Lee, K., Schiffler, R. (2013). A combinatorial formula for rank 2 cluster variables. J. Algebra Comb. 37:67–85.
  • Lepowsky, J., Moody, R. V. (1979). Hyperbolic Lie algebras and quasiregular cusps on Hilbert modular surfaces. Math. Ann. 245(1):63–88.
  • Niemann, P. (2002). Some generalized Kac–Moody algebras with known root multiplicities. Mem. Am. Math. Soc. 157(746).
  • Peterson, D. H. (1983). Freudenthal-type formulas for root and weight multiplicities (preprint (unpublished)).
  • Rupel, D. (2012). Proof of the Kontsevich non-commutative cluster positivity conjecture. C. R. Math. Acad. Sci. Paris 350:929–932.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.