57
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

On the zero locus of ideals defining the Nash blowup of toric surfaces

&
Pages 1048-1059 | Received 21 Dec 2016, Published online: 30 Oct 2017

References

  • Atanasov, A., Lopez, C., Perry, A., Proudfoot, N., Thaddeus, M. (2011). Resolving toric varieties with Nash blow-ups. Exp. Math. 20(3):288–303.
  • Chávez Martínez, E. (2016). Variedades tóricas sin la condición de normalidad, Masther thesis, Universidad Nacional Autónoma de México.
  • Cox, D., Little, J., Schenck, H. (2011). Toric Varieties. Graduate Studies in Mathematics, Vol. 124. AMS.
  • Danilov, V. (1978). The geometry of toric varieties. Russ. Math. Surveys 141:97–154.
  • Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H. (2015). Singular 4-0-2—A computer algebra system for polynomial computations. Available at: http://www.singular.uni-kl.de. Last accessed date May 11, 2015.
  • de Jong, T., Pfister, G. (2000). Local Analytic Geometry. Basic Theory and Application. Advanced Lectures in Mathematics. Braunschweig: Friedrich Vieweg & Sohn.
  • Duarte, D. (2014). Nash modication on toric surfaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A, Matemáticas 108(1):153–171.
  • Giles, A. (2013). Specialization to the tangent cone and Whitney equisingularity. Bull. Soc. Math. France 141(2): 299–342.
  • Gonzalez-Sprinberg, G. (1977). Eventails en dimension 2 et transformé de Nash. Paris: Publ. de l’E.N.S., pp. 1–68.
  • Gonzalez-Sprinberg, G. (1982). Résolution de Nash des points doubles rationnels. Ann. Inst. Fourier, Grenoble 32(2):111–178.
  • González, P. D., Teissier, B. (2014). Toric geometry and the Semple-Nash modication. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A, Matemáticas 108(1):1–48.
  • Grigoriev, D., Milman, P. (2012). Nash desingularization for binomial varieties as Euclidean division, a priori termination bound, polynomial complexity in dim 2. Adv. Math. 231(6):3389–3428.
  • Hironaka, H. (1983). On Nash blowing-up. In: Arithmetic and Geometry II. Progr. Math., Vol 36. Boston, Mass.: Birkhauser, pp. 103–111.
  • Ishida, M.-N. (1980). Torus embeddings and dualizing complexes. Tôhoku Math. J. 32:111–146.
  • Lejeune-Jalabert, M., Reguera, A. (2003). The Denef-Loefer series for toric surfaces singularities. In: Proceedings of the International Conference on Algebraic Geometry and Singularities (Spanish) (Sevilla, 2001). Rev. Mat. Iberoamericana, Vol 19, pp. 581–612.
  • Nobile, A. (1975). Some properties of the Nash blowing-up. Pac. J. Math. 60:297–305.
  • Rebassoo, V. (1977). Desingularisation properties of the Nash blowing-up process, Thesis, University of Washington.
  • Riemenschneider, O. (1974). Deformationen von Quotientensingularitäten (nach zyklischen Gruppen). Math. Ann. 209:211–248.
  • Semple, J. G. (1954). Some investigations in the geometry of curve and surface elements. Proc. London Math. Soc. (3) 4:24–49.
  • Spivakovsky, M. (1990). Sandwiched singularities and desingularisation of surfaces by normalized Nash transformations. Ann. Math. (2) 131(3):411–491.
  • Sturmfels, B. (1996). Gröbner Bases and Convex Polytopes. University Lecture Series, Vol. 8. Providence, RI: American Mathematical Society.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.