71
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

An elimination lemma for algebras with PBW bases

Pages 3520-3532 | Received 17 Dec 2016, Published online: 08 Feb 2018

References

  • Becker, T., Weispfenning, V. (1993). Gröbner Bases. Springer-Verlag.
  • Chyzak, F. (1994). Holonomic systems and automatic proving of identities. Research Report 2371. Institute National de Recherche en Informatique et en Automatique, New York.
  • Chyzak, F., Salvy, B. (1998). Noncommutative elimination in Ore algebras proves multivariate identities. J. Symbolic Comput. 26:187–227.
  • Gateva-Ivanova, T. (1996). Skew polynomial rings with binomial relations. J. Algebra 185:710–753.
  • Gateva-Ivanova, T. (2004). Binomial skew polynomial rings, Artin-Schelter regularity, and binomial solutions of the Yang-Baxter equation. Binomial skew polynomial rings, Artin-Schelter regularity, and binomial solutions of the Yang-Baxter equation. 30:431–470.
  • Gateva-Ivanova, T. (2012). Quadratic algebras, Yang-Baxter equation, and Artin-Schelter regularity. Adv. Math. 230:2152–2175.
  • Green, E. L. (1999). Noncommutative Gröbner bases and projective resolutions. In: Michler, Schneider, eds. Computational Methods for Representations of Groups and Algebras, Proceedings of the Euroconference, Essen, 1997. Progress in Mathematics, Vol. 173. Basel: Birkhauser Verlag, pp. 29–60.
  • Gröbner, W. (1968, 1970). Algebraic Geometrie I, II. Mannheim: Bibliographisches Institut.
  • Humphreys, J. E. (1972). Introduction to Lie Algebras and Representation Theory. Berlin/New York: Springer.
  • Kandri-Rody, A., Weispfenning, V. (1990). Non-commutative Gröbner bases in algebras of solvable type. J. Symbolic Comput. 9:1–26.
  • Krause, G. R., Lenagan, T. H. (1991). Growth of Algebras and Gelfand-Kirillov Dimension. Graduate Studies in Mathematics. Providence, Rhode Island: American Mathematical Society.
  • Kredel, H., Weispfenning, V. (1989). Computing dimension and independent sets for polynomial ideals. In: Robbiano, L., ed. Computational Aspects of Commutative Algebra. Academic Press, pp. 97–113 (from a special issue of the Journal of Symbolic Computation).
  • Li, H. (2002). Noncommutative Gröbner Bases and Filtered-Graded Transfer. Lecture Notes in Mathematics, Vol. 1795. Berlin: Springer.
  • Li, H. (2009). Γ-leading homogeneous algebras and Gröbner bases. In: Li, F., Dong, C. eds. Recent Developments in Algebra and Related Areas. Advanced Lectures in Mathematics, Vol. 8. Boston-Beijing: International Press & Higher Education Press, pp. 155–200.
  • Li, H. (2010). Looking for Gröbner basis theory for (almost) skew 2-nomial algebras. J. Symbolic Comput. 45:918–942. Available at arXiv:0808.1477 [math.RA], http://arXiv.org.
  • Li, H. (2011). Gröbner Bases in Ring Theory. Singapore: World Scientific Publishing Company.
  • Li, H. (2014). A note on solvable polynomial algebras. Comput. Sci. J. Moldova 22(1):99–109. Available at arXiv:1212.5988 [math.RA], http://arXiv.org.
  • Li, H., Wu, Y. (2000). Filtered-graded transfer of Gröbner basis computation in solvable polynomial algebras. Commun. Algebra 28(1):15–32.
  • McConnell, J. C., Robson, J. C. (1987). Noncommutative Noetherian Rings. Chichester: John Wiley & Sons, Ltd.
  • Mora, T. (1994). An introduction to commutative and noncommutative Gröbner Bases. Theor. Comput. Sci. 134:131–173.
  • Petkovsek, M., Wilf, H., Zeilberger, D. (1996). A = B. Wellesley: A.K. Peters, Ltd.
  • Shepler, A. V., Witherspoon, S. (2015). Poincaré-Birkhoff-Witt Theorems. In: Eisenbud, D., Iyengar, S. B., Singh, A. K., Stafford, J. T., Van den Bergh, M., eds. Commutative Algebra and Noncommutative Algebraic Geometry. Mathematical Sciences Research Institute Proceedings, Vol. 1. Cambridge: Cambridge University Press.
  • Ufnarovski, V. (1982). A growth criterion for graphs and algebras defined by words. Mat. Zametki 31:465–472 (in Russian; English translation: Math. Notes 37:238–241).
  • Wilf, H. S., Zeilberger, D. (1992). An algorithmic proof theory for hypergeometric (ordinary and q) multisum/integral identities. Invent. Math. 108:575–633.
  • Zeilberger, D. (1990). A holonomic system approach to special function identities. A holonomic system approach to special function identities. 32:321–368.
  • Zeilberger, D. (1991). The method of creative telescoping. The method of creative telescoping. 11:195–204.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.