108
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Gröbner-Shirshov bases for free Gelfand-Dorfman-Novokov algebras and for right ideals of free right Leibniz algebras

, , &
Pages 4392-4402 | Received 03 Jun 2017, Published online: 19 Mar 2018

References

  • Adams, W. W., Loustaunau, P. (1994). An introduction to Gröbner Bases. Graduate Studies in Mathematics, Vol. 3. American Mathematical Society (AMS).
  • Bahturin, J. A. (1978). Lectures on Lie Algebras. Lectures given at Humboldt University, Berlin and Lomonosov University, Moscow. Studien zur Algebra und ihre Anwendungen (Studies in Algebra and Its Applications), Vol. 4. Berlin: Akademie-Verlag, viii+126 pp.
  • Bahturin, Y. A. (1987). Identical Relations in Lie Algebras. Translated from the Russian by Bahturin. Utrecht: VNU Science Press, b.v., x+309 pp. ISBN: 90-6764-052-2.
  • Bahturin, Y. A., Mikhalev, A. A., Petrogradsky, V. M., Zaicev, M. V. (1992). Infinite-Dimensional Lie Superalgebras. De Gruyter Expositions in Mathematics, Vol. 7. Berlin: Walter de Gruyter & Co., x+250 pp. ISBN: 3-11-012974-4.
  • Balinskii, A. A., Novikov, S. P. (1985). Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Soviet Math. Dokl. 32:228–231.
  • Bergeron, N., Loday, J.-L. (2010). The symmetric operation in a free pre-Lie algebra is magmatic. Proc. Amer. Math. Soc. 139(5):1585–1597.
  • Bokut, L. A., Chen, Y. Q. (2008). Gröbner-Shirshov bases: Some new results. In: Proceedings of the Second International Congress in Algebra and Combinatorics, Guangzhou, China, 2–4 July, 2007, Beijing, China, 6–11 July 2007, Xian, China, 12–15 July 2007. World Scientific, pp. 35–56.
  • Bokut, L. A., Chen, Y. Q. (2014). Gröbner-Shirshov bases and their calculation. Bull. Math. Sci. 4:325–395.
  • Bokut, L. A., Chen, Y. Q., Chen, Y. S. (2010). Composition-diamond lemma for tensor product of free algebras. J. Algebra 323:2520–2537.
  • Bokut, L. A., Chen, Y. Q., Chen, Y. S. (2011). Gröbner-Shirshov bases for Lie algebras over a commutative algebra. J. Algebra 337:82–102.
  • Bokut, L. A., Chen, Y. Q., Deng, X. M. (2010). Gröbner-Shirshov bases for Rota-Baxter algebras Siberian Math. J. 51(6):978–988.
  • Bokut, L. A., Chen, Y.Q., Huang, J. P. (2013). Gröbner-Shirshov bases for L-algebras. Int. J. Algebra Comput. 23(3): 547–571.
  • Bokut, L. A., Chen, Y. Q., Li, Y. (2008). Gröbner-Shirshov bases for Vinberg-Koszul-Gerstenhaber right-symmetric algebras. Fundam. Appl. Math. 14(8):55–67.
  • Bokut, L. A., Chen, Y. Q., Liu, C. H. (2010). Gröbner-Shirshov bases for dialgebras. Int. J. Algebra Comput. 20(3): 391–415.
  • Bokut, L. A., Chen, Y. Q., Mo, Q. H. (2013). Gröbner-Shirshov bases for semirings. Journal of Algebra 385:47–63.
  • Bokut, L. A., Chen, Y. Q., Qiu, J. J. (2010). Gröbner-Shirshov bases for associative algebras with multiple operators and free Rota-Baxter algebras. J. Pure Appl. Algebra 214:89–100.
  • Bokut, L. A., Chen, Y. Q., Shum, K. P. (2012). Some new results on Gröbner-Shirshov bases. I n: Proceedings of International Conference on Algebra 2010, Advances in Algebraic Structures, Gadjah Mada University, Indonesia, 7–10 October 2010. World Scientific, pp. 53–102.
  • Bokut, L. A., Chen, Y., Zhang, Z. (2018). On free Gelfand-Dorfman-Novikov-Poisson algebras and a PBW theorem. J. Algebra, 500:153–170.
  • Bokut, L. A., Chen, Y. Q., Zhang, Z. R. (2017). Gröbner-Shirshov bases method for Gelfand-Dorfman-Novikov algebras. J. Algebra Its Appl. 16(1):22 p.
  • Bokut, L. A., Fong, Y., Ke, W.-F. (2004). Composition-Diamond lemma for associative conformal algebras. J. Algebra 272:739–774.
  • Bokut, L. A., Fong, Y., Ke, W.-F., Kolesnikov, P. S. (2000). Gröbner and Gröbner-Shirshov bases in algebra and conformal algebras. Fundam. Appl. Math. 6(3):669–706.
  • Bokut, L. A., Kolesnikov, P. S. (2003). Gröbner-Shirshov bases: From their incipiency to the present. J. Math. Sci. 116(1):2894–2916.
  • Bokut, L. A., Kolesnikov, P. S. (2005). Gröbner-Shirshov bases, conformal algebras and pseudo-algebras. J. Math. Sci. 131(5):5962–6003.
  • Bokut, L. A., Kukin, G. (1994). Algorithmic and Combinatorial Algebra. Dordrecht: Kluwer Academic Publ.
  • Buchberger, B. (1965). An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal (in German). Ph.D. Thesis. University of Innsbruck, Austria.
  • Buchberger, B. (1970). An algorithmical criteria for the solvability of algebraic systems of equations. Aequationes Math. 4:374–383.
  • Buchberger, B., Collins, G. E., Loos, R., Albrecht, R. (1982). Computer Algebra, Symbolic and Algebraic Computation. Computing Supplementum, Vol.4. New York: Springer-Verlag.
  • Buchberger, B., Winkler, F. (1998). Gröbner Bases and Applications. London Mathematical Society Lecture Note Series, Vol. 251. Cambridge: Cambridge University Press.
  • Chen, Y. S., Chen, Y. Q. (2012). Gröbner-Shirshov bases for matabelian Lie algebras. J. Algebra 358:143–161.
  • Chen, Y. Q., Chen, Y. S., Zhong, C. Y. (2010). Composition-diamond lemma for modules. Czechoslovak Math. J. 60(135):59–76.
  • Chibrikov, E. S. (2004). On free Lie conformal algebras. Vestnik Novosibirsk State Univ. 4(1):65–83.
  • Cox, D. A., Little, J., O’Shea, D. (1992). Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. New York: Springer-Verlag.
  • de Graaf, W. A. (2000). Lie Algebras: Theory and Algorithms. North-Holland Mathematical Library, Vol. 56. Amsterdam: North-Holland Publishing Co., xii+393 pp. ISBN: 0-444-50116-9.
  • Dotsenko, V., Khoroshkin, A. (2010). Gröbner bases for operads. Duke Math. J. 153(2):363–396.
  • Dzhumadildaev, A., Löfwall, C. (2002). Trees, free right-symmetric algebras, free Novikov algebras and identities. Homol. Homotopy Appl. 4(2):165–190.
  • Eisenbud, D. (1995). Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, Vol. 150. Berlin and New York: Springer-Verlag.
  • Filippov, V. T. (1989). A class of simple nonassociative algberas. Mat. Zametki 45:101–105.
  • Gelfand, I. M., Dorfman, I. Hamiltonian operators and algebraic structures related to them. Funkts. Anal. Prilozhen 13:13–30.
  • Gerdt, V. P., Lassner, W. (1993). Isomorphism verification for complex and real Lie algebras by Gröbner basis technique. Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics (Acireale, 1992). Dordrecht: Kluwer Acad. Publ., pp. 245–254.
  • Gubarev, V., Kolesnikov, P. (2017). Gröbner-shirshov basis of the universal enveloping Rota-baxter algebra of a Lie algebra. J. Lie Theory 27(3):887–905.
  • Hironaka, H. (1964). Resolution of singularities of an algebraic variety over a field if characteristic zero, I, II. Ann. Math. 79:109–203, 205–326.
  • Kang, S.-J., Lee, K.-H. (2000). Gröbner-Shirshov bases for irreducible sln+1-modules. J. Algebra 232:1–20.
  • Kolesnikov, P. S. (2017). Gröbner-Shirshov bases for pre-associative algebras. Commun. Algebra 45(12):5283–5296.
  • Loday, J.-L. (1993). Une version non commutative des algebres de Lie: les algebras de Leibniz. Enseign. Math. 39:269–293.
  • Loday, J.-L., Vallette, B. (2012). Algebraic Operads. A Series of Comprehensive Studies in Mathematics. Berlin and Heidelberg: Springer-Verlag.
  • Mikhalev, A. A. (1989). The junction lemma and the equality problem for color Lie superalgebras. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 5:88–91. English translation in (1989): Moscow Univ. Math. Bull. 44:87–90.
  • Mikhalev, A. A. (1992). The composition lemma for color Lie superalgebras and for Lie p-superalgebras. Contemp. Math. 131(2):91–104.
  • Mikhalev, A. A. (1995). Shirshov’s composition techniques in Lie superalgebra (non-commutative Gröbner bases). Trudy. Sem. Petrovsk. 18:277–289. English translation in (1996): J. Math. Sci. 80:2153–2160.
  • Mikhalev, A. A., Zolotykh, A. A. (1998). Standard Gröbner-Shirshov bases of free algebras over rings, I. Free associative algebras. Int. J. Algebra Comput. 8(6):689–726.
  • Novikov, S. P. (1985). The geometry of conservative systems of hydrodynamical type. The method of averaging for field theoretical systems. Uspekhi Mat. Nauk. 40:79–89. English Transl. in (1985): Russian Math. Surveys 40:85–98.
  • Osborn, J. M. (1992). Novikov algebras. Nova J. Algebra & Geom. 1:1–14.
  • Osborn, J. M., Zelmanov, E. I. (1995). Nonassociative algebras related to Hamiltonian operators in the formal calculus of variations, J. Pure Appl. Algebra 101:335–352.
  • Segal, D. (1994). Free left-symmetric algebras and an analogue of the Poincaré-Birkhoff-Witt Theorem. J. Algebra 164:750–772.
  • Shirshov, A. I. (1962). Certain algorithmic problems for 𝜖−algebras. Sib. Mat. Zh. 3:132–137.
  • Shirshov, A. I. (1962). Some algorithmic problem for Lie algebras. Sibirsk. Mat. Z. 3(2):292–296 (in Russian). English translation in (1999): SIGSAM Bull. 33(2):3–6.
  • Selected works of Shirshov, A. I. (2009). Edited by Leonid A. Bokut, Victor Latyshev, Ivan Shestakov and Efim Zelmanov. Translated by Murray Bremner and Mikhail V. Kotchetov. Contemporary Mathematicians. Basel: Birkhäuser, viii, 242 p.
  • Zelmanov, E. I. (1987). On a local translation invariant Lie algebras. Soviet Math. Dokl. 35:216–218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.