180
Views
3
CrossRef citations to date
0
Altmetric
Articles

Gröbner–Shirshov bases for brace algebras

, & ORCID Icon
Pages 4577-4589 | Received 07 Sep 2017, Published online: 19 Sep 2018

References

  • Adams, W. W., Loustaunau, P. (1994). An Introduction to Gröbner Bases. Graduate Studies in Mathematics, Vol. 3. Providence, Rhode Island: American Mathematical Society.
  • Bergman, G. M. (1978). The diamond lemma for ring theory. Adv. Math. 29:178–218.
  • Bokut, L. A. (1972). Insolvability of the word problem for Lie algebras, and subalgebras of finitely presented Lie algebras. Izvestija AN USSR (Mathem.) 36(6):1173–1219.
  • Bokut, L. A. (1976). Imbeddings into simple associative algebras. Algebra Logika 15:117–142.
  • Bokut, L. A., Chen, Y. Q. (2014). Gröbner-Shirshov bases and their calculation. Bull. Math. Sci. 4:325–395.
  • Bokut, L. A., Kukin, G. (1994). Algorithmic and Combinatorial Algebra. Dordrecht: Kluwer Academic Publ.
  • Bokut, L. A., Chen, Y., Deng, X. (2010). Gröbner–Shirshov bases for Rota-Baxter algebras. Siberian Math. J. 51(6): 978–988.
  • Bokut, L. A., Chen, Y., Li, Y. (2008). Gröbner–Shirshov bases for Vinberg-Koszul-Gerstenhaber right-symmetric algebras, Fund. Appl. Math. 14(8):55–67 (in Russian). J. Math. Sci. 166:603–612, 2010.
  • Bokut, L. A., Chen, Y., Li, Y. (2013). Lyndon–Shirshov basis and anti-commutative algebras. J. Algebra 378:173–183.
  • Bokut, L. A., Chen, Y., Mo, Q. (2013). Gröbner–Shirshov bases for semirings. J. Algebra 385:47–63.
  • Bokut, L. A., Chen, Y., Zhao, X. (2009). Gröbner–Shirshov bases for free inverse semigroups. Int. J. Algebra Comput. 19:129–143.
  • Buchberger, B. (1970). An algorithmical criteria for the solvability of algebraic systems of equations. Aequationes Math. 4:374–383.
  • Buchberger, B., Collins, G. E., Loos, R., Albrecht, R. (1982). Computer Algebra, Symbolic and Algebraic Computation. Computing Supplementum, Vol. 4. New York: Springer-Verlag.
  • Buchberger, B., Winkler, F. (1998). Gröbner Bases and Applications. London Mathematical Society Lecture Note Series, Vol. 251. Cambridge: Cambridge University Press.
  • Chapoton, F. (2002). Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres braces. J. Pure Appl. Algebra 168:1–18.
  • Chapoton, F., Livernet, M. (2001). Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Notices 8:395–408.
  • Chen, Y., Chen, Y. (2012). Gröbner–Shirshov bases for matabelian Lie algebras. J. Algebra 358:143–161.
  • Chen, Y., Chen, Y., Zhong, C. (2010). Composition-Diamond lemma for modules. Czechoslovak Math. J. 60(135): 59–76.
  • Chibrikov, E. S. (2004). On free Lie conformal algebras. Vestnik Novosibirsk State Univ. 4(1):65–83.
  • Connes, A., Kreimer, D. (1998). Hopf algebras, renormalization and noncommutative geometry. Comm. Math. Phys. 199:203–242.
  • Cox, D. A., Little, J., O’Shea, D. (1992). Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. New York: Springer-Verlag.
  • Eisenbud, D. (1995). Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, Vol. 150. Berlin and New York: Springer-Verlag.
  • Foissy, L. (2002). Les algèbres de Hopf des arbres enracinés, I. Bull. Sci. Math. 126:193–239.
  • Foissy, L. (2002). Les algèbres de Hopf des arbres enracinés, II. Bull. Sci. Math. 126:1249–288.
  • Foissy, L. (2010). Free brace algebras are free pre-Lie algebras. Commun. Algebra 38:3358–3369.
  • Hironaka, H. (1964). Resolution of singularities of an algebraic variety over a field if characteristic zero, I, II. Ann. Math. 79:109–203, 205–326.
  • Holtkamp, R. (2003). Comparison of Hopf algebras on trees. Arch. Math. 80:368–383.
  • Kang, S.-J., Lee, K.-H. (2000). Gröbner-Shirshov bases for irreducible sln+1-modules. J. Algebra 232:1–20.
  • Kolesnikov, P. S. (2017). Gröbner–Shirshov bases for pre-associative algebras. Commun. Algebra 45:5283–5296.
  • Li, Y., Mo, Q. (2017). Embedding into 2-generated simple associative (Lie) algebras. Commun. Algebra 45(06): 2435–2443.
  • Loday, J.-L., Rono, M. O. (1998). Hopf algebra of the planar binary trees. Adv. Math. 139:293–309.
  • Mikhalev, A. A. (1992). The composition lemma for color Lie superalgebras and for Lie p-superalgebras. Contemp. Math. 131(2):91–104.
  • Mikhalev, A. A. (1995). Shirshov’s composition techniques in Lie superalgebra (non-commutative Gröbner bases). Trudy Sem. Petrovsk. 18:277–289 (English translation: J. Math. Sci. 80:2153–2160, 1996).
  • Murray., B., Mikhail., V. K. (2009). Selected Works of A. I. Shirshov. In: Bokut, A. L., Latyshev, V., Shestakov, I., Zelmanov, E., eds., Basel, Boston, Berlin: Birkhäuser.
  • Ronco, M. (2001). A Milnor-Moore theorem for dendriform Hopf algebras. C. R. Acad. Sci. Paris Sér. I Math. 332: 109–114.
  • Shirshov, A. I. (1962). Some algorithmic problems for 𝜀-algebras. Sibirsk. Mat. Z. 3:132–137.
  • Shirshov, A. I. (1962). Some algorithmic problems for Lie algebras. Sibirsk. Mat. Z. 3(2):292–296 (in Russian). English translation: SIGSAM Bull. 33(2):3–6, 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.