614
Views
12
CrossRef citations to date
0
Altmetric
Research Article

The complex-type k-Fibonacci sequences and their applications

&
Pages 1352-1367 | Received 22 Jul 2020, Accepted 05 Oct 2020, Published online: 21 Oct 2020

References

  • Aydin, H., Dikici, R. (1998). General Fibonacci sequences in finite groups. Fibonacci Quart. 36(3):216–221.
  • Berzsenyi, G. (1975). Sums of products of generalized Fibonacci numbers. Fibonacci Quart. 13:343–344.
  • Brualdi, R. A., Gibson, P. M. (1977). Convex polyhedra of doubly stochastic matrices I: applications of permanent function. J. Combin. Theory Series A. 22(2):194–230. DOI: 10.1016/0097-3165(77)90051-6.
  • Campbell, C. M., Campbell, P. P. (2004). On the Fibonacci length of powers of dihedral groups. In: Howard, F. T., ed. Applications of Fibonacci Numbers, Vol. 9. Dordrecht: Kluwer Academic Publisher, pp. 69–85.
  • Campbell, C. M., Doostie, H., Robertson, E. F. (1990). Fibonacci length of generating pairs in groups. In: Bergum, G. E., ed. Applications of Fibonacci Numbers, Vol. 3. Dordrecht: Kluwer Academic Publishers; Springer, pp. 27–35.
  • Chen, W. Y. C., Louck, J. D. (1996). The combinatorial power of the companion matrix. Linear Algebra Appl. 232:261–278. DOI: 10.1016/0024-3795(95)90163-9.
  • Deveci, O., Karaduman, E., Campbell, C. M. (2011). On the k -nacci sequences in finite binary polyhedral groups. Algebra Colloq. 18(spec01):945–954. DOI: 10.1142/S1005386711000824.
  • Deveci, O., Karaduman, E., Campbell, C. M. (2017). The Fibonacci-circulant sequences and their applications. Iran. J. Sci. Technol. Trans. Sci. 41(4):1033–1038. DOI: 10.1007/s40995-017-0317-7.
  • Deveci, O., Shannon, A. G. (2018). The quaternion-Pell sequence. Commun. Algebra 46(12):5403–5409. DOI: 10.1080/00927872.2018.1468906.
  • Doostie, H., Hashemi, M. (2006). Fibonacci lengths involving the Wall number K(n). J. Appl. Math. Comput. 20(1-2):171–180. DOI: 10.1007/BF02831931.
  • Falcon, S., Plaza, A. (2009). k-Fibonacci sequences modulo m. Chaos Solitons Fract. 41(1):497–504. DOI: 10.1016/j.chaos.2008.02.014.
  • Horadam, A. F. (1961). A generalized Fibonacci sequence. Am. Math. Mon. 68(5):455–459. DOI: 10.1080/00029890.1961.11989696.
  • Horadam, A. F. (1963). Complex Fibonacci numbers and Fibonacci quaternions. Am. Math. Mon. 70(3):289–291. DOI: 10.2307/2313129.
  • Horadam, A. F., Shannon, A. G. (1976). Ward’s Staudt-Clausen problem. Math. Scand. 39 (4):239–250. DOI: 10.7146/math.scand.a-11659.
  • Kalman, D. (1982). Generalized Fibonacci numbers by matrix methods. Fibonacci Quart. 20(1):73–76.
  • Karaduman, E., Ayd In, H. (2009). k-nacci sequences in some special groups of finite order. Math. Comput. Modell. 50(1-2):53–58. DOI: 10.1016/j.mcm.2009.03.010.
  • Kilic, E. (2008). The Binet formula, sums and representations of generalized Fibonacci p-numbers. Eur. J. Combin. 29(3):701–711. DOI: 10.1016/j.ejc.2007.03.004.
  • Kilic, E., Tasci, D. (2006). On the generalized order-k Fibonacci and Lucas numbers. Rocky Mt. J. Math. 36(6):1915–1926.
  • Kilic, E., Taşci, D. (2007). On the permanents of some tridiagonal matrices with applications to the Fibonacci and Lucas numbers. Rocky Mt. J. Math. 37(6):1953–1969. DOI: 10.1216/rmjm/1199649832.
  • Knox, S. W. (1992). Fibonacci sequences in finite groups. Fibonacci Quart. 30(2):116–120.
  • Lancaster, P., Tismenetsky, M. (1985). The Theory of Matrices: With Applications. New York: Academic Press.
  • Lidl, R., Niederreiter, H. (1994). Introduction to Finite Fields and Their Applications. Cambridge, UK: Cambridge University Press.
  • Lu, K., Wang, J. (2006). k-step Fibonacci sequence modulo m. Util. Math. 71:169–177.
  • Ozgur, N. Y. (2005). On the sequences related to Fibonacci and Lucas numbers. J. Korean Math. Soc. 42(1):135–151. DOI: 10.4134/JKMS.2005.42.1.135.
  • Ozkan, E. (2014). Truncated Lucas sequences and its period. Appl. Math. Comput. 232:285–291.
  • Ozkan, E., Aydin, H., Dikici, R. (2003). 3-step Fibonacci series modulo m. Appl. Math. Comput. 143(1):165–172.
  • Shannon, A. G. (1974). A method of Carlitz applied to the kth power generating function for Fibonacci numbers. Fibonacci Quart. 12(3):293–299.
  • Shannon, A. G. (1974). Explicit expressions for powers of arbitrary order linear recursive sequences. Fibonacci Quart. 12(3):281–287.
  • Shannon, A. G. (1974). Some properties of a fundamental recursive sequence of arbitrary order. Fibonacci Quart. 12(4):327–335.
  • Shannon, A. G. (1976). Ordered partitions and arbitrary order linear recurrence relations. Math. Student. 43(3):110–117.
  • Stakhov, A., Rozin, B. (2006). Theory of Binet formulas for Fibonacci and Lucas p-numbers. Chaos Solitons Fract. 27(5):1162–1177. DOI: 10.1016/j.chaos.2005.04.106.
  • Stakhov, A. P., Rozin, B. (2006). The continuous functions for the Fibonacci and Lucas p-numbers. Chaos Solitons Fract. 28(4):1014–1025. DOI: 10.1016/j.chaos.2005.08.158.
  • Tasci, D., Firengiz, M. C. (2010). Incomplete Fibonacci and Lucas p-numbers. Math. Comput. Modell. 52(9-10):1763–1770. DOI: 10.1016/j.mcm.2010.07.003.
  • Wall, D. D. (1960). Fibonacci series modulo m. Am. Math. Mon. 67(6):525–532. DOI: 10.1080/00029890.1960.11989541.
  • Wilcox, H. J. (1986). Fibonacci sequences of period n in Groups. Fibonacci Quart. 24(4):356–361.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.