489
Views
1
CrossRef citations to date
0
Altmetric
Articles

Nonlinear realizations of Lie superalgebras

ORCID Icon
Pages 4917-4936 | Received 16 Dec 2021, Accepted 04 May 2022, Published online: 31 May 2022

References

  • Bering, K. (2007). On non-commutative Batalin-Vilkovisky algebras, strongly homotopy Lie algebras and the Courant bracket. Commun. Math. Phys. 274(2):297–341. [hep-th/0603116]. DOI: 10.1007/s00220-007-0278-3.
  • Bonezzi, B., Hohm, O. (2020). Leibniz gauge theories and infinity structures. Commun. Math. Phys. 377(3):2027–2077. DOI: 10.1007/s00220-020-03785-2. [1904.11036].
  • Bonezzi, R., Hohm, O. (2021). Duality hierarchies and differential graded Lie algebras. Commun. Math. Phys. 382(1):277–315. DOI: 10.1007/s00220-021-03973-8. [1910.10399].
  • Borsten, L., Kim, H., Saemann, C. EL∞-algebras, generalized geometry, and tensor hierarchies. DOI: 10.48550/arXiv.2106.00108.[2106.00108]
  • Cederwall, M., J. Palmkvist, J. (2019). L∞ algebras for extended geometry from Borcherds superalgebras. Commun. Math. Phys. 369:721–760. [1804.04377]. DOI: 10.1007/s00220-019-03451-2.
  • Getzler, E. Higher Derived Brackets. DOI: 10.48550/arXiv.1010.5859.[1010.5859].
  • Günaydin, M., Koepsell, K., Nicolai, H. (2001). Conformal and quasiconformal realizations of exceptional Lie groups. Commun. Math. Phys. 221:57–76. DOI: 10.1007/PL00005574.[hep-th/0008063].
  • Fiorenza, D., Manetti, M. (2007). L-infinity structures on mapping cones. ANT. 1(3):301–330. [math/0601312]. DOI: 10.2140/ant.2007.1.301.
  • Kantor, I. (1970). Graded Lie algebras. Trudy Sem. Vect. Tens. Anal. 15:227–266.
  • Kantor, I. (2001). On a vector field formula for the Lie algebra of a homogeneous space. J. Algebra 235(2):766–782. DOI: 10.1006/jabr.2000.8504.
  • Kotov, A., Strobl, T. (2020). The embedding tensor, Leibniz–Loday algebras, and their higher gauge theories. Commun. Math. Phys. 376(1):235–258. [1812.08611]. DOI: 10.1007/s00220-019-03569-3.
  • Lada, T., Markl, M. (1995). Strongly homotopy Lie algebras. Commun. Algebra 23(6):2147–2161. [hep-th/9406095]. DOI: 10.1080/00927879508825335.
  • Lada, T., Stasheff, J. (1993). Introduction to SH Lie algebras for physicists. Int. J. Theor. Phys. 32(7):1087–1104. [hep-th/9209099]. DOI: 10.1007/BF00671791.
  • Lavau, S. (2019). Tensor hierarchies and Leibniz algebras. J. Geom. Phys. 144:147–189. [1708.07068]. DOI: 10.1016/j.geomphys.2019.05.014.
  • Lavau, S., Palmkvist, J. (2020). Infinity-enhancing of Leibniz algebras. Lett Math Phys. 110(11):3121–3152. [1907.05752]. DOI: 10.1007/s11005-020-01324-7.
  • Lavau, S., Stasheff, J. From Differential Crossed Modules to Tensor Hierarchies. DOI: 10.48550/arXiv.2003.07838.[2003.07838].
  • Palmkvist, J. (2006). A realization of the Lie algebra associated to a Kantor triple system. J. Math. Phys. 47(2):023505. [math/0504544]. DOI: 10.1063/1.2168690.
  • Palmkvist, J. (2010). Three-algebras, triple systems and 3-graded Lie superalgebras. J. Phys. A: Math. Theor. 43(1):015205. [0905.2468]. DOI: 10.1088/1751-8113/43/1/015205.