116
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Classification of 7-dimensional solvable Lie algebras having 5-dimensional nilradicals

, , , & ORCID Icon
Pages 1866-1885 | Received 09 May 2022, Accepted 24 Oct 2022, Published online: 10 Dec 2022

References

  • Bianchi, L. (1903). Lezioni sulla teoria dei gruppi continui finiti di trasformazioni. Pisa: E Spoerri Libraio-Editore.
  • Boza, L., Echarte, F. J., Núez, J. (1994). Classification of complex filiform Lie algebras of dimension 10. Algebras Groups Geom. 11(3):253–276.
  • Boza, L., Fedriani, E. M., Núez, J. (2003). Complex filiform Lie algebras of dimension 11. Appl. Math. Comput. 141(2–3):611–630.
  • Cartan, E. (1984). Sur la structure des groupes de transformations finis et continus [Thèse]. Paris: Faculté des sciences de Paris, Académie de Paris.
  • Chen, L. (2012). A class of solvable Lie algebras with triangular decompositions. Commun. Algebra. 40(7):2285–2300. DOI: 10.1080/00927872.2010.526679.
  • Cox, D. A., Little, J., O’shea, D. (2015). Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Cham: Springer.
  • de Graaf, W. A. (2005). Classification of solvable Lie algebras. Exp. Math. 14(1):15–25.
  • Dixmier, J. (1958). Sur les represéntations unitaires des groupes de Lie nilpotents III. Canad. J. Math. 10:321–348. DOI: 10.4153/CJM-1958-033-5.
  • Gantmacher, F. R. (1939). On the classification of real simple Lie groups. Sb Math. 5(2):217–250.
  • Gerdt, V. P., Lassner, W. (2003). Isomorphism verification for complex and real Lie algebras by Gröbner basis technique. In: Ibragimov, N. H., Torrisi, M., Valenti, A., eds. Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics. Proceedings of the International Workshop; 1992 October 27–31; Acireale, Catania, Italy. The Netherlands: Springer, pp. 245–254.
  • Gong, M. P. (1998). Classification of nilpotent Lie algebras of dimension 7 (Over algebraically closed fields and R ) [PhD dissertation]. Waterloo, Ontario, CA: University of Waterloo. http://hdl.handle.net/10012/1148.
  • Hindeleh, F., Thompson, G. (2008). Seven dimensional Lie algebras with a four-dimensional nilradical. Algebras Groups Geom. 25(3):243–265.
  • Jacobson, N. (1962). Lie Algebras. New York: Dover.
  • Kobotis, A., Tsagas, G. (1990). Invariants of nilpotent Lie algebras of dimension eight. J. Inst. Math. Comput. Sci. Math. Ser. 3(3):345–356.
  • Lie, M. S., Engel, F. (1893). Theorie der Transformationsgruppen III. Leipzig: B. G. Teubner.
  • Levi, E. E. (1905). Sulla struttura dei gruppi finiti e continui. Atti Accad Sci Torino Cl Sci Fis Mat Natur. 40:551–565.
  • Malcev, A. I. (1945). On solvable Lie algebras. Izv. Ross. Akad. Nauk. Ser. Mat. 9(5):329–356.
  • Morozov, V. V. (1958). Classification of nilpotent Lie algebras of dimension 6. Izv Vyssh Uchebn Zaved Mat. 4:161–171.
  • Mubarakzyanov, G. M. 1963). On solvable Lie algebras. Izv. Vyssh. Uchebn. Zaved. Mat. 1:114–123.
  • Mubarakzyanov, G. M. (1963). Classification of real structures of Lie algebras of fifth order. Izv. Vyssh. Uchebn. Zaved. Mat. 3:99–106.
  • Mubarakzyanov, G. M. (1963). Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element. Izv. Vyssh. Uchebn. Zaved. Mat. 4:104–116.
  • Mubarakzyanov, G. M. (1966). Some theorems on solvable Lie algebras. Izv. Vyssh. Uchebn. Zaved. Mat. 6:95–98.
  • Ndogmo, J. C, Winternitz, P. (1994). Solvable Lie algebras with Abelian nilradicals. J. Phys. A Math. Gen. 27:405–423 DOI: 10.1088/0305-4470/27/2/024.
  • Nguyen, A. T., Le, A. V., Vo, N. T. (2021). Testing isomorphism of complex and real Lie algebras. https://arxiv.org/abs/2102.10770arXiv:2102.10770, 14pp.
  • Parry, A. R. (2007). A classification of real indecomposable solvable Lie algebras of small dimension with codimension one nilradicals [Master thesis]. Logan, UT: Utah State University. https://digitalcommons.usu.edu/etd/7145.
  • Romdhani, M. (1989). Classification of real and complex nilpotent Lie algebras of dimension 7. Linear Multilinear Algebra. 24(3):167–189. DOI: 10.1080/03081088908817910.
  • Rubin, J. R., Winternitz, P. (1993). Solvable Lie algebras with Heisenberg ideals. J. Phys. A Math. Gen. 26:1123–1138. DOI: 10.1088/0305-4470/26/5/031.
  • Seeley, C. (1993). 7-dimensional nilpotent Lie algebras. Trans. Amer. Math. Soc. 335(2):479–496.
  • Shabanskaya, A., Thompson, G. (2013). Solvable extensions of a special class of nilpotent Lie algebras. Arch. Math. (Brno). 49(3):141–159. DOI: 10.5817/AM2013-3-141.
  • Shabanskaya, A. (2016). Solvable indecomposable extensions of two nilpotent Lie algebras. Commun. Algebra. 44(3):3626–3667. DOI: 10.1080/00927872.2014.925117.
  • Šnobl, L. (2011). Maximal solvable extensions of filiform algebras. Arch. Math. (Brno). 47(5):405–414.
  • Šnobl, L., Karásek, D. (2010). Classification of solvable Lie algebras with a given nilradical by means of solvable extensions of its subalgebras. Linear Algebra Appl. 432:1836–1850.
  • Šnobl, L., Winternitz, P. (2005). A class of solvable Lie algebras and their Casimir invariants. J Phys A Math Gen. 38:2687–2700. DOI: 10.1088/0305-4470/38/12/011.
  • Šnobl, L., Winternitz, P. (2009). All solvable extensions of a class of nilpotent Lie algebras of dimension n and degree of nilpotency n – 1. J. Phys. A Math. Gen. 2009;42:1–16.
  • Šnobl, L., Winternitz, P. (2012). Solvable Lie algebras with Borel nilradicals. J Phys A Math Theor. 45 (095202):18. DOI: 10.1088/1751-8113/45/9/095202.
  • Šnobl, L., Winternitz, P. (2014). Classification and Identification of Lie Algebras, Vol. 33 of CRM Monograph Series. Providence, RI: American Mathematical Society.
  • Tsagas, G., Kobotis, A. (1991). Nilpotent Lie algebras of dimension nine. J. Inst. Math. Comput. Sci. Math. Ser. 4(1):21–28.
  • Tsagas, G. (1999). Classification of nilpotent Lie algebras of dimension eight. J. Inst. Math. Comput. Sci. Math. Ser. 12(3):179–183.
  • Tsagas, G., Kobotis, A., Koukouvinos, T. (2000). Classification of nilpotent Lie algebras of dimension nine whose maximum abelian ideal is of dimension seven. Int. J. Comput. Math. 74(1):5–28.
  • Turkowski, P. (1990). Solvable Lie algebras of dimension six. J. Math. Phys. 31(6):1344–1350.
  • Wang, Y., Lin, J., Deng, S. (2008). Solvable Lie algebras with quasifiliform nilradicals. Commun. Algebra. 36(11):4052–4067. DOI: 10.1080/00927870802174629.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.