133
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Strong 3-skew commutativity preserving maps on prime rings with involution

, &
Pages 3854-3872 | Received 21 Apr 2022, Accepted 03 Mar 2023, Published online: 24 Mar 2023

References

  • Bresar, M., Miers, M., C. R. (1994). Strong commutativity preserving maps of semiprime ring. Can. Math. Bull. 37:457–460. DOI: 10.4153/CMB-1994-066-4.
  • Qing, D., Mohammad, A. (1996). On strong commutativity preserving maps. Results Math. 30:259–263. DOI: 10.1007/BF03322194.
  • Lin, J.-S., Liu, C.-K. (2008). Strong commutativity preserving maps on Lie ideals. Linear Algebra Appl. 428: 1601–1609. DOI: 10.1016/j.laa.2007.10.006.
  • Liu, L. (2015). Strong commutativity preserving maps on von Neumann algebras. Linear Multilinear Algebra 63:490–496. DOI: 10.1080/03081087.2013.873428.
  • Qi, X.-F., Hou, J.-C. (2010). Nonlinear strong commutativity preserving maps on prime rings. Commun. Algebra 38:2790–2796. DOI: 10.1080/00927870903071179.
  • Qi, X.-F. (2016). Strong 2-commutativity preserving maps on prime rings. Publ. Math. Debrecen 88:119–129. DOI: 10.5486/PMD.2015.7270.
  • Liu, M. Y., Hou, J. C. (2017). Strong 3-commutativity preserving maps on standard operator algebra. Acta Math. Sin. (Engl. Ser.) 33:1659–1670. DOI: 10.1007/s10114-017-6145-z.
  • Liu, M.-Y., Hou, J.-C. (2017). Strong k-commutativity preserving maps on 2×2 matrices. J. Taiyuan Univ. Tech. 48:254–259. DOI: 1007-9432(2017)02-0254-06.
  • Qi, X.-F., Hou, J.-C. (2017). Strong 3-commutativity preserving maps on prime rings. Linear Multilinear Algebra 65:2153–2169. DOI: 10.1080/0308187.2016.1265063.
  • Hou, J.-C., Qi, X.-F. (2018). Strong k-commutativity preservers on complex standard operator algebras. Linear Multilinear Algebra 66:902–918. DOI: 10.1080/03081087.2017.1330868.
  • Molnár, L. (1996). A condition for a subspace of B(H) to be an ideal. Linear Algebra Appl. 235:229–234. DOI: 10.1016/0024-3795(94)00143-X.
  • Cui, J.-L., Hou, J.-C. (2006). Linear maps preserving elements annihilated by a polymnomial XY−YX† . Studia Math. 174:183–199. DOI: 10.4064/sm174-2-5.
  • Cui, J.-L., Li, C.-K. (2009). Maps preserving product XY−YX∗ on factor von Neumann algebras. Linear Algebra Appl. 431:833–842. DOI: 10.1016/j.laa.2009.03.036.
  • Cui, J.-L., Park, C. (2012). Maps preserving strong skew lie product on factor von neumann algebras. Acta Math. Sci. 32:531–538. DOI: 10.1016/S0252-9602(12)60035-6.
  • Dai, L.-Q., Lu, F.-Y. (2014). Nolinear maps preserving Jordan *-products. J. Math. Anal. Appl. 409:180–188. DOI: 10.1016/j.jmaa.2013.07.019.
  • Li, C.-J., Lu, F.-Y., Fang, X.-C. (2013). Nolinear mappings preserving product XY+YX* on factor von Neumann algebras. Linear Algebra Appl. 438:2339–2345. DOI: 10.1016/j.laa.2012.10.015.
  • Li, C.-J., Lu, F.-Y., Fang, X.-C. (2014). Nolinear ξ -Jordan *-dervations on von Neumann algebras. Linear Multilinear Algebra 62:466–473. DOI: 10.1080/03081087.2013.780603.
  • Qi, X.-F., Hou, J.-C. (2013). Strong skew commutativity preserving maps on von Neumann algebras. J. Math. Anal. Appl. 397:363–370. DOI: 10.1016/j.jmaa.2012.07.036.
  • Liu, L. (2016). Strong skew commutativity preserviting maps on rings. J. Aust. Math. Soc. 100:78–85. DOI: 10.1016/j.jmaa.2012.07.036.
  • Li, C.-J., Chen, Q.-Y. (2016). Strong skew commutativity preserving maps on rings with involution. Acta Math. Sci. English Series 32:745–752. DOI: 10.1007/s10114-016-4761-7.
  • Hou, J.-C., Wang, W. (2019). Strong 2-skew commutativity preserving maps onprime rings with involution. Bull. Malays. Math. Sci. Soc. 42:33–49. DOI: 10.1007/s40840-017-0465-0.
  • Wang, W., Hou, J.-C. (2017). Strong k-skew commutativity preserving maps on self-adjoint standard operator algebras. Acta Math. Sinica (Chin. Ser.) 60:39–52. DOI: 10.12386/A20170004.
  • Passman, D. S. (1987). Computing the symmetric ring of quotients. J. Algebra 105:207–235. DOI: 10.1016/0021-8693(87)90187-6.
  • Martindale III, W. S. (1969). Prime rings satisfying a generalized polynomial identity. J. Algebra 12:576–584. DOI: 10.1016/0021-8693(69)90029-5.
  • Martindale III, W. S. (1972). Prime rings with involution and generalized polynomial identities. J. Algebra 22: 502–516. DOI: 10.1016/0021-8693(72)90164-0.
  • Bresˇ ar, M., Chebotar, M. A., Martindale III, W. S. (2007). Functional Identities. Basel: Birkha.. user.
  • Bresˇ ar, M., Martindale III, W. S., Miers, C. R. (1993). Centralizing maps on prime rings with involution. J. Algebra 161:342–357. DOI: 10.1006/jabr.1993.1223.
  • Chuang, C.-L. (1989). *-Differential identities of prime rings with involution. Trans. Amer. Math. Soc. 316:251–279. DOI: 10.1090/S0002-9947-1989-0937242-2.
  • Qi, X.-F., Zhang, Y.-Z. (2018). k-skew Lie products on prime rings with involution. Commun. Algebra 46:1001–1010. DOI: 10.1080/00927872.2017.1335744.
  • Lam, T.-Y. (2006). Exercises in Modules and Rings. New York: Springer.
  • Ara, P. (1990). The extended centroid of C * -algebras. Arch. Math. 54:358–364. DOI: 10.1007/BF01189582.
  • Xia, D.-X., Yan, S.-Z. (1987). Spectrum Theory of Linear Operators II: Operator Theory on Indefinite Inner Product Spaces. Beijing: Science Press.
  • Fong, C.-K., Sourour, A. R. (1979). On the operator equation ∑i=1nAiXBi≡0 . Can. J. Math. 31:845–857. DOI: 10.4153/CJM-1979-080-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.