42
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Combinatorial bases of standard modules of twisted affine Lie algebras in types and : rectangular highest weights

&
Pages 4012-4032 | Received 15 Nov 2022, Accepted 22 Mar 2023, Published online: 06 Apr 2023

References

  • Bakalov, B. N., Kac, V. G. (2004). Twisted modules over lattice vertex algebras. In Doebner, H.-D., Dobrev, V. K., eds. Lie theory and its Applications in Physics V. River Edge, NJ: World Scientific Publishing Co., Inc., pp. 3–26.
  • Butorac, M. (2014). Combinatorial bases of principal subspaces for the affine Lie algebra of type B2(1) . J. Pure Appl. Algebra. 218:424–447. DOI: 10.1016/j.jpaa.2013.06.013.
  • Butorac, M. (2016). Quasi-particle bases of principal subspaces for the affine Lie algebras of types Bl(1) and Cl(1) . Glas. Mat. Ser. III. 51:59–108. DOI: 10.3336/gm.51.1.05.
  • Butorac, M. Kožić, S. (2022). Principal subspaces for the affine Lie algebras in types D, E and F. J. Algebraic Combin. 56:1063–1096. DOI: 10.1007/s10801-022-01146-x.
  • Butorac, M., Kožić, S., Primc, M. (2021). Parafermionic bases of standard modules for affine Lie algebras. Math. Z. 298:1003–1032. DOI: 10.1007/s00209-020-02639-w.
  • Butorac, M., Sadowski, C. (2019). Combinatorial bases of principal subspaces of modules for twisted affine Lie algebras of type A2l−1(2), Dl(2), E6(2) and D4(3) . New York J. Math. 25:71–106.
  • Calinescu, C., Lepowsky, J., Milas, A. (2014). Vertex-algebraic structure of principal subspaces of standard A2(2) -modules, I. Int. J. Math. 25(07):1450063. DOI: 10.1142/S0129167X14500633.
  • Dong, C., Lepowsky, J. (1996). The algebraic structure of relative twisted vertex operators. J. Pure Appl. Algebra. 110:259–295. DOI: 10.1016/0022-4049(95)00095-X.
  • Dong, C., Li, H., Mason, G. (1996). Simple currents and extensions of vertex operator algebras. Commun. Math. Phys. 180:671–707. DOI: 10.1007/BF02099628.
  • Stoyanovsky, A. V., Feigin, B. L. (1994). Functional models of the representations of current algebras and semi-infinite Schubert cells. (Russian) Funktsional Anal. i Prilozhen. 28: 68–90, 96; translation in Funct. Anal. Appl. 28: 55–72; preprint Feigin, B. L., Stoyanovsky, A. V. Quasi-Particles Models for the Representations of Lie algebras and Geometry of Flag Manifold. hep-th/9308079. DOI: 10.1007/BF01079010.
  • Frenkel, I. B., Lepowsky, J., Meurman, A. (1987). Vertex operator calculus. In: Yau, S. T. ed. Mathematical Aspects of String Theory (San Diego, Calif., 1986). Advanced Series in Mathematical Physics, 1, Singapore: World Scientific Publishing, pp. 150–188.
  • Frenkel, I., Lepowsky, J., Meurman, A. (1988). Vertex Operator Algebras and the Monster. Pure and Applied Mathematics, Vol. 134. Boston: Academic Press.
  • Fulman, J. (2000). The Rogers-Ramanujan identities, the finite general linear groups, and the Hall-Littlewood polynomials. Proc. Amer. Math. Soc. 128(1):17–25. DOI: 10.1090/S0002-9939-99-05292-2.
  • Georgiev, G. (1996). Combinatorial constructions of modules for infinite-dimensional Lie algebras, I. Principal subspace. J. Pure Appl. Algebra 112:247–286. DOI: 10.1016/0022-4049(95)00143-3.
  • Georgiev, G. (1995). Combinatorial constructions of modules for infinite dimensional Lie algebras, II. Parafermionic space. arXiv preprint q-alg/9504024.
  • Gepner, D. (1987). New conformal field theories associated with Lie algebras and their partition functions. Nuclear Phys. B 290:10–24. DOI: 10.1016/0550-3213(87)90176-3.
  • Gepner, D. (2022). Generalized Rogers-Ramanujan expressions for some non-singlet twisted affine algebras. Modern Phys. Lett. A 37(18):2250105. DOI: 10.1142/S021773232250105X.
  • Hua, J. (2000). Counting Representations of Quivers over finite fields. J. Algebra 226:1011–1033. DOI: 10.1006/jabr.1999.8220.
  • Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Tsuboi, T. (2002). Path, crystals and fermionic formulae. In: Kashiwara, M., Tetsuji, M., eds. MathPhys Odyssey 2001. Progress in Mathematical Physics, Vol. 23. Boston, MA: Birkhäuser, pp. 205–272.
  • Kac, V. G. (1990). Infinite Dimensional Lie Algebras. 3rd ed. Cambridge: Cambridge University Press.
  • Kuniba, A., Nakanishi, T., Suzuki, J. (1993). Characters in conformal field theories from thermodynamic Bethe Ansatz. Modern Phys. Lett. A 08:1649–1659. DOI: 10.1142/S0217732393001392.
  • Lepowsky, J. (1985). Calculus of twisted vertex operators. Proc. Nat. Acad. Sci. U.S.A. 82:8295–8299. DOI: 10.1073/pnas.82.24.829.
  • Lepowsky, J., Primc, M. (1985). Structure of the standard modules for the affine Lie algebra A1(1) . In: Lepowsky, J., Mandelstam S., Singer, I. M., eds. Vertex Operators in Mathematics and Physics. Contemporary Mathematics, Vol. 46. Providence, RI: American Mathematical Society, pp. 143–162.
  • Lepowsky, J., Wilson, R. L. (1981). A new family of algebras underlying the Rogers-Ramanujan identities and generalizations. Proc. Nat. Acad. Sci. U.S.A. 78(12):7254–7258. DOI: 10.1073/pnas.78.12.725.
  • Lepowsky, J., Wilson, R. L. (1984). The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities. Invent. Math. 77(2):199–290. DOI: 10.1007/BF01388447.
  • Lepowsky, J., Wilson, R. L. (1985). The structure of standard modules, II, The case A1, principal gradation. Invent. Math. 79(3):417–442. DOI: 10.1007/BF01388515.
  • Li, H. (1996). Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules. In: Dong, C., Mason G., eds. Moonshine, the Monster, and Related Topics (South Hadley, MA, 1994). Contemporary Mathematics, Vol. 193. Providence, RI: American Mathematical Society, pp. 203–236.
  • Li, H. (2012). Twisted modules and pseudo-endomorphisms. Algebra Colloq. 19(02):219–236. DOI: 10.1142/S1005386712000156.
  • Okado, M., Takenaka, R. (2022). Parafermionic bases of standard modules for twisted affine Lie algebras of type A2l−1(2), Dl(2), E6(2) and D4(3) . Algebras Represent. Theory. DOI: 10.1007/s10468-022-10145-2.
  • Penn, M., Sadowski, C. (2018). Vertex-algebraic structure of principal subspaces of the basic modules for twisted Affine Kac-Moody Lie algebras of type A2n−1(2), Dn(2), E6(2) . J. Algebra 496:242–291. DOI: 10.1016/j.jalgebra.2017.10.022.
  • Primc, M. (1994). Vertex operator construction of standard modules for An(1) . Pacific J. Math. 162:143–187. DOI: 10.2140/pjm.1994.162.143.
  • Takenaka, R. (2022). Vertex algebraic construction of modules for twisted affine Lie algebras of type A2l(2) . arXiv preprint 2205.05271.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.