141
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The ideal of Lesieur-Croisot elements of Jordan pairs

&
Pages 4091-4104 | Received 01 Mar 2022, Accepted 19 Dec 2022, Published online: 06 Apr 2023

References

  • Anquela, J. A., Cortés, T., Montaner, F. (1995). Local inheritance in Jordan algebras. Arch. Math. 64:393–401. DOI: 10.1007/BF01197216.
  • Anquela, J. A., Cortés, T., McCrimmon, K., Montaner, F. (1997). Strong primeness of Hermitian Jordan systems. J. Algebra 198:311–326. DOI: 10.1006/jabr.1997.7137.
  • D’Amour, A. (1992). Quadratic Jordan systems of Hermitian type. J. Algebra 149:197–233.
  • Fernández López, A., García Rus, E. (1995). Prime Jordan algebras satisfying local Goldie conditions. J. Algebra 174:1024–1048. DOI: 10.1006/jabr.1995.1165.
  • Fernández López, A., García Rus, E. (1996). Nondegenerate Jordan algebras satisfying local Goldie conditions. J. Algebra 182:52–59. DOI: 10.1006/jabr.1996.0161.
  • Fernández López, A., García Rus, E., Gómez Lozano, M., Siles Molina, M. (1998). Goldie theorems for associative pairs. Commun. Algebra 26(9):2987–3020. DOI: 10.1080/00927879808826324.
  • Fernández López, A., García Rus, E., Jaa, O. (1998). Towards a Goldie theory for Jordan pairs. Manuscripta Math. 95:79–90. DOI: 10.1007/BF02678016.
  • Fernández López, A., García Rus, E., Montaner, F. (2002). Goldie Theory for Jordan algebras. J. Algebra 248: 397–471. DOI: 10.1006/jabr.2001.9009.
  • Fernández López, A., Tocón, M. I. (2003). Strongly prime Jordan pairs with nonzero socle. Manuscripta Math. 111:321–340. DOI: 10.1007/s00229-003-0372-6.
  • Gómez Lozano, M., Siles Molina, M. (2004). Left quotient associative pairs and Morita invariant properties. Commun. Algebra 32(7):2841–2862. DOI: 10.1081/AGB-120037419.
  • Loos, O. (1975). Jordan Pairs. Lecture Notes in Mathematics, Vol. 460. New York: Springer.
  • Loos, O. (1989). On the socle of a Jordan pair. Collect. Math. 40:109–125.
  • Loos, O. (1991). Finiteness conditions in Jordan pairs. Math. Z. 206:577–587. DOI: 10.1007/BF02571365.
  • Loos, O. (1995). Elementary groups and stability for Jordan pairs. K. Theory 9:77–116. DOI: 10.1007/BF00965460.
  • McCrimmon, K. (1984). Strong prime inheritance in Jordan systems. Algebras Groups Geom. 1:217–234.
  • McCrimmon, K. (1998). Martindale systems of symmetric quotients. Algebras Groups Geom. 6:153–237.
  • McCrimmon, K., Zelmanov, E. (1988). The structure of strongly prime quadratic Jordan algebras. Adv. Math. 69:133–222. DOI: 10.1016/0001-8708(88)90001-1.
  • Meyberg, K. (1972). Lectures on Jordan Algebras and Triple Systems. Lecture Notes. Charlottesville: University of Virginia.
  • Montaner, F. (1999). Local PI theory of Jordan systems. J. Algebra 216:302–327. DOI: 10.1006/jabr.1998.7755.
  • Montaner, F. (2001). Local PI theory of Jordan systems II. J. Algebra 241:473–514. DOI: 10.1006/jabr.2001.8779.
  • Montaner, F. (2010). Algebras of quotients of Jordan algebras. J. Algebra 323:2638–2670. DOI: 10.1016/j.jalgebra.2010.02.019.
  • Montaner, F., Paniello, I. (2007). Algebras of quotients of nonsingular Jordan algebras. J. Algebra 312(2):963–984. DOI: 10.1016/j.jalgebra.2006.06.052.
  • Montaner, F., Paniello, I. (2017). Local orders in Jordan algebras. J. Algebra 485:45–76. DOI: 10.1016/j.jalgebra.2017.03.013.
  • Montaner, F., Paniello, I. (2021). PI theory for associative pairs. Linear Multilinear Algebra 69(14):2586–2606. DOI: 10.1080/03081087.2019.1686452.
  • Montaner, F., Tocón, M. (2006). Local Lesieur-Croisot theory of Jordan algebras. J. Algebra 301:256–273. DOI: 10.1016/j.jalgebra.2005.07.014.
  • Montaner, F., Tocón, M. I. (2009). The ideal of Lesieur-Croisot elements of a Jordan algebra. II. In: Algebras, Representations and Applications, Contemporary Mathematics, Vol. 483. Providence, RI: American Mathematical Society, pp. 199–203.
  • Rowen, L. H. (1980). Polynomial Identities in Ring Theory. New York: Academic Press.
  • Zelmanov, E. (1987). Goldie’s theorem for Jordan algebras. Siberian Math. J. 28:44–52.
  • Zelmanov, E. (1988). Goldie’s theorem for Jordan algebras II. Siberian Math. J. 29:68–74.