37
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Irreducible graded bimodules over algebras and a Pierce decomposition of the Jacobson radical

ORCID Icon & ORCID Icon
Pages 4226-4254 | Received 12 Feb 2024, Accepted 11 Apr 2024, Published online: 26 Apr 2024

References

  • Abakarov, A. Sh. (1984). Identities of an algebra of triangular matrices. J. Soviet Math. 27:2831–2848 (Russian). DOI: 10.1007/BF01410736.
  • Aljadeff, E., Giambruno, A., Karasik, Y. (2017). Polynomial identities with involution, superinvolutions and the Grassmann envelope. Proc. Amer. Math. Soc. 145(5):1843–1857. DOI: 10.1090/proc/13546.
  • Aljadeff, E., Kanel-Belov, A. (2010). Representability and Specht problem for G-graded algebras. Adv. Math. 225(5):2391–2428. DOI: 10.1016/j.aim.2010.04.025.
  • Amitsur, S. A. (1952). A general theory of radicals. I. Radicals in complete lattices. Amer. J. Math. 74(4):774–786. DOI: 10.2307/2372225.
  • Amitsur, S. A. (1954). A general theory of radicals. II. Radicals in rings and bicategories. Amer. J. Math. 76(1):100–125. DOI: 10.2307/2372403.
  • Andrunakievič, V. A., Rjabuhin, Ju. M. (1964). Modules and radicals. Dokl. Akad. Nauk SSSR 5:991–995.
  • Bahturin, Yu. A., Sehgal, S. K., Zaicev, M. V. (2008). Finite-dimensional simple graded algebras. Sbornik: Math. 199(7):965. DOI: 10.1070/SM2008v199n07ABEH003949.
  • Belov-Kanel, A., Rowen, L., Vishne, U. (2012). Full exposition of Specht’s problem. Serdica Math. J. 38:1–3, 313–370.
  • Brown, K. A., Smith, S. P. (1985). Bimodules over a solvable algebraic Lie algebra. Q. J. Math. 36(2):129–139. DOI: 10.1093/qmath/36.2.129.
  • Centrone, L. (2016). The G-graded identities of the Grassmann Algebra. Archivum Math. 52(3):141–158. DOI: 10.5817/AM2016-3-141.
  • Centrone, L., Estrada, A., Ioppolo, A. (2022). On PI-algebras with additional structures: rationality of Hilbert series and Specht’s problem. J. Algebra 592:300–356. DOI: 10.1016/j.jalgebra.2021.11.005.
  • Curtis, C. W., Reiner, I. (1962). Representation theory of finite groups and associative algebras. AMS Chelsea Publishing Series, Vol. 356. New York: Interscience.
  • de França, A. (2019). Graded algebras with the neutral component satisfying a polynomial identity of degree 2. Doctoral Thesis, University of Brasília.
  • de França, A., Sviridova, I. Yu. (2022). Köthe’s problem, Kurosch-Levitzky problem and graded rings. J. Algebra 602:224–246. DOI: 10.1016/j.jalgebra.2022.03.016.
  • Drensky, V. S. (2000). Free Algebras and PI-Algebras: Graduate Course in Algebra. Berlin: Springer Verlag.
  • Foster, D. M. (1973). Radicals and Bimodules. Proc. Amer. Math. Soc. 38(1):47–52. DOI: 10.1090/S0002-9939-1973-0330242-9.
  • Gardner, B. J., Wiegandt, R. (2003). Radical Theory of Rings, 1st ed. Pure and Applied Mathematics, 261. Boca Raton, FL: CRC Press.
  • Genov, G. K. (1981). Some Specht varieties of associative algebras. Pliska Stud. Math. Bulgar 2:30–40 (Russian).
  • Giambruno, A., Zaicev, M. V. (2003). Asymptotics for the standard and the Capelli identities. Israel J. Math. 135(1):125–145. DOI: 10.1007/BF02776053.
  • Giambruno, A., Zaicev, M. V. (2005). Polynomial identities and asymptotic methods, no. 122. Providence, RI: American Mathematical Society.
  • Herstein, I. N. (2005). Noncommutative Rings, no. 15. Cambridge: Cambridge University Press.
  • Hoffman, K., Kunze, R. A. (1971). Linear Algebra. Prentice-Hall Mathematics Series. Hoboken, NJ: Prentice-Hall.
  • Isaacs, I. M. (1976). Character Theory of Finite Groups. Amsterdam: Academic Press Inc.
  • Jacobson, N. (1951). General representation theory of Jordan algebras. Trans. Amer. Math. Soc. 70(3):509–530. DOI: 10.1090/S0002-9947-1951-0041118-9.
  • Jacobson, N. (1954). Structure of alternative and Jordan bimodules. Osaka Math. J. 6(1):1–71.
  • Jacobson, N. (1964). Structure of Rings, revised ed. CP37. Providence, RI: AMS.
  • James, G., Liebeck, M. (2001). Representations and characters of groups. Cambridge: Cambridge University Press.
  • Karasik, Y. (2016). Kemer’s theory for H-module algebras with application to the PI exponent. J. Algebra 457:194–227. DOI: 10.1016/j.jalgebra.2016.02.021.
  • Kemer, A. R. (1987). Finite basis property of identities of associative algebras. Algebra Logic 26(5):362–397. DOI: 10.1007/BF01978692.
  • Kemer, A. R. (1991). Ideals of identities of associative algebras. Providence, RI: American Mathematical Society.
  • Kurosch, A. G. (1953). Radicals of rings and algebras. Mat. Sb., Nov. Ser. 33:13–26 (Russian).
  • Latyshev, V. N. (1980). Nonmatrix varieties of associative algebras. Mat. Zametki 27:147–156 (Russian).
  • Mal’tsev, A. I. (1942). On the representation of an algebra as a direct sum of the radical and a semi-simple subalgebra. 36(1):942 (Russian).
  • Márki, L., Wiegandt, R. (1993). Theory of Radicals. Colloquia Mathematica Societatis Janos Bolyai. Amsterdam: North-Holland.
  • Nastasescu, C., Van Oystaeyen, F. (2004). Methods of Graded Rings. Berlin: Springer.
  • Nastasescu, C., Van Oystaeyen, F. (2011). Graded Ring Theory. North-Holland Mathematical Library. Amsterdam: Elsevier Science.
  • Popov, A. P. (1981). On the Specht property of some varieties of associative algebras. Pliska Stud. Math. Bulgar 2:41–53 (Russian).
  • Ribenboim, P. (1969). Rings and Modules. Interscience Tracts in Pure and Applied Mathematics, no. 24. New York: Interscience.
  • Rotman, J. J. (2010). Advanced Modern Algebra. Graduate Studies in Mathematics. Proivdence, RI: American Mathematical Society.
  • Serre, J. P. (1977). Linear Representations of Finite Groups. Collection Méthodes. Mathématiques. New York: Springer-Verlag.
  • Shestakov, I., Trushina, M. (2016). Irreducible bimodules over alternative algebras and superalgebras. Trans. Amer. Math. Soc. 368(7):4657–4684. DOI: 10.1090/tran/6475.
  • Specht, W. (1950). Gesetze in Ringen. I. Mathematische Zeitschrift 52(1):557–589. DOI: 10.1007/BF02230710.
  • Sviridova, I. Yu. (2011). Identities of PI-algebras graded by a finite abelian group. Commun. Agebra 39(9):3462–3490. DOI: 10.1080/00927872.2011.593417.
  • Vámos, P. (1978). On the minimal prime ideals of a tensor product of two fields. Math. Proc. Cambridge Philos. Soc. 84(1):25–35. DOI: 10.1017/S0305004100054840.
  • Wisbauer, R. (1996). Modules and Algebras. Bimodule Structure on Group Actions and Algebras. Pitman Monographs and Surveys in Pure and Applied Mathematics 81. Harlow Essex: Longman.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.