1,438
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Estimation of the linear mixed integrated Ornstein–Uhlenbeck model

, , &
Pages 1541-1558 | Received 26 Apr 2015, Accepted 25 Dec 2016, Published online: 12 Jan 2017

References

  • Laird N, Ware J. Random-effects models for longitudinal data. Biometrics. 1982;38:963–974. doi: 10.2307/2529876
  • Boscardin W, Taylor J, Law N. Longitudinal models for AIDS marker data. Stat Methods Med Res. 1998;7(1):13–27. doi: 10.1191/096228098674392113
  • Sowers MF, Crutchfield M, Randolph JF, et al. Urinary ovarian and gonadotrophin hormone levels in premenopausal women with low bone mass. J Bone Miner Res. 1998;13(7):1191–1202. doi: 10.1359/jbmr.1998.13.7.1191
  • Diggle P. An approach to the analysis of repeated measurements. Biometrics. 1988;44(4):959–971. doi: 10.2307/2531727
  • Taylor J, Cumberland W, Sy J. A stochastic model for analysis of longitudinal AIDS data. J Am Stat Assoc. 1994;89(427):727–736. doi: 10.1080/01621459.1994.10476806
  • Zhang D, Lin X, Raz J, et al. Semiparametric stochastic mixed models for longitudinal data. J Am Stat Assoc. 1998;93:710–719. doi: 10.1080/01621459.1998.10473723
  • Stirrup O, Babiker A, Carpenter J, et al. Fractional Brownian motion and multivariate-t models for longitudinal biomedical data, with application to CD4 counts in HIV-positive patients. Stat Med. 2016;35(9):1514–1532. doi: 10.1002/sim.6788
  • Wolbers M, Babiker A, Sabin C. Pretreatment CD4 cell slope and progression to AIDS or death in HIV-infected patients initiating antiretroviral therapy – The CASCADE Collaboration: a collaboration of 23 cohort studies. PLOS Med. 2010;7(2):1–9. doi: 10.1371/journal.pmed.1000239
  • Taylor J, Law N. Does the covariance structure matter in longitudinal modelling for the prediction of future CD4 counts?. Stat Med. 1998;17:2381–2394. doi: 10.1002/(SICI)1097-0258(19981030)17:20<2381::AID-SIM926>3.0.CO;2-S
  • StataCorp. Stata statistical software: release 13. College Station (TX): StataCorp LP; 2013.
  • Patterson H, Thompson R. Recovery of inter-block information when block sizes are unequal. Biometrika. 1971;58(3):545–554. doi: 10.1093/biomet/58.3.545
  • Pinheiro J, Bates D. Mixed effects models in S and Splus. New York: Springer-Verlag; 2000.
  • Diggle P, Heagerty P, Liang KY, et al. Analysis of longitudinal data. 2nd ed. Oxford: Oxford University Press; 2002.
  • Wu L. Mixed effects models for complex data. Boca Raton: Chapman and Hall/CRC; 2009.
  • Rubin D. Inference and missing data (with discussion). Biometrika. 1976;63(3):581–592. doi: 10.1093/biomet/63.3.581
  • Lindstrom M, Bates D. Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures. J Am Stat Assoc. 1988;83:1014–1022.
  • Jennrich R, Sampson P. Newton-Raphson and related algorithms for maximum likelihood variance component estimation. Technometrics. 1976;18(1):11–17. doi: 10.2307/1267911
  • Gilmour A, Thompson R, Cullis B. Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics. 1995;51(4):1440–1450. doi: 10.2307/2533274
  • Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B. 1977;39:1–38.
  • Gumedze F, Dunne T. Parameter estimation and inference in the linear mixed model. Linear Algebra Appl. 2011;435(8):1920–1944. doi: 10.1016/j.laa.2011.04.015
  • Meng XL, Rubin D. Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika. 1993;80(2):267–278. doi: 10.1093/biomet/80.2.267
  • Meng XL, Dykvan D. Fast EM-type implementations for mixed effects models. J R Stat Soc B. 1998;60(3):559–578. doi: 10.1111/1467-9868.00140
  • Dykvan D. Fitting mixed-effects models using efficient EM-type algorithms. J Comput Graph Stat. 2000;9:78–98.
  • Liu C, Rubin D, Wu Y. Parameter expansion to accelerate EM: the PX-EM algorithm. Biometrika. 1998;85(4):755–770. doi: 10.1093/biomet/85.4.755
  • Foulley J, Dykvan D. The PX-EM algorithm for fast stable fitting of Henderson's mixed model. Genet Sel Evol. 2000;32(2):143–163. doi: 10.1186/1297-9686-32-2-143
  • Pinheiro J, Bates D. Unconstrained parametrizations for variance-covariance matrices. Stat Comput. 1996;6(3):289–296. doi: 10.1007/BF00140873
  • Wolfinger R, Tobias R, Sall J. Computing Gaussian likelihoods and their derivatives for general linear mixed models. SIAM J Sci Comput. 1994;15(6):1294–1310. doi: 10.1137/0915079
  • Goodnight J, Hemmerke W. A simplified algorithm for the w transformation in variance component estimation. Technometrics. 1979;21(2):265–267. doi: 10.1080/00401706.1979.10489760
  • Hemmerle W, Hartley H. Computing maximum likelihood estimates for the mixed A. O. V. model using the WTransformation. Technometrics. 1973;15:819–831.
  • Goodnight J. A tutorial on the SWEEP operator. Am Stat. 1979;33:149–158.
  • Stata. Mata reference manual release 13. StataCorp, College Station, TX: Stata Press; 2013.
  • UK Collaborative HIV Cohort Steering Committee. The creation of a large UK-based multicentre cohort of HIV-infected individuals: the UK collaborative HIV cohort (UK CHIC) study. HIV Med. 2004;5(2):115–124. doi: 10.1111/j.1468-1293.2004.00197.x
  • White I. Simsum: analyses of simulation studies including Monte Carlo error. Stata J. 2010;10:369–385.
  • Kackar R, Harville D. Approximations for standard errors of estimators of fixed and random effects in mixed linear models. J Am Stat Assoc. 1984;79:853–862.
  • Sandhu J, Ben-Shlomo Y, Cole T, et al. The impact of childhood body mass index on timing of puberty, adult stature and obesity: a follow-up study based on adolescent anthropometry recorded at Christ's Hospital (1936 to 1964). Int J Obesity. 2006;30(1):14–22. doi: 10.1038/sj.ijo.0803156
  • Lampl M, Ashizawa K, Kawabata M, et al. An example of variation and pattern in saltation and stasis growth dynamics. Ann Hum Biol. 1998;25(3):203–219. doi: 10.1080/03014469800005582
  • Pawitan Y. In all likelihood. Oxford: Oxford University Press; 2013.
  • Müller HG. Longitudinal data analysis. Boca Raton: Chapman and Hall/CRC; 2008.
  • Sorensen H, Goldsmith J, Sangallic L. An introduction with medical applications to functional data analysis. Stat Med. 2013;32(30):5222–5240. doi: 10.1002/sim.5989
  • Yao F, Müller HG, Wang JL. Functional data analysis for sparse longitudinal data. J Am Stat Assoc. 2005;100(470):577–590. doi: 10.1198/016214504000001745
  • Zhu B, Taylor J, Song PXK. Semiparametric stochastic modeling of the rate function in longitudinal studies. J Am Stat Assoc. 2011;106(496):1485–1495. doi: 10.1198/jasa.2011.tm09294
  • Zhu B, Taylor J, Song PXK. Stochastic functional data analysis: a diffusion model-based approach. Biometrics. 2011;67(4):1295–1304. doi: 10.1111/j.1541-0420.2011.01591.x
  • Brumback B, Rice J. Smoothing spline models for the analysis of nested and crossed samples of curves. J Am Stat Assoc. 1998;93(443):961–976. doi: 10.1080/01621459.1998.10473755
  • Rice J. Functional and longitudinal data analysis: perspectives on smoothing. Stat Sin. 2004;14:631–647.
  • Nummi T, Koskela L. Analysis of growth curve data by using cubic smoothing splines. J Appl Stat. 2008;35(6):681–691. doi: 10.1080/02664760801923964
  • Guo W. Functional data analysis in longitudinal settings using smoothing splines. Stat Methods Med Res. 2004;13:49–62. doi: 10.1191/0962280204sm352ra