180
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Fast Bayesian variable screenings for binary response regressions with small sample size

, &
Pages 2708-2723 | Received 26 Sep 2016, Accepted 09 Jun 2017, Published online: 25 Jun 2017

References

  • Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc B. 1996;58:267–288.
  • Zou H. The adaptive lasso and its oracle properties. J Am Statist Assoc. 2006;101:1418–1429. doi: 10.1198/016214506000000735
  • Fan J, Li R. Variable selection via non-concave penalized likelihood and its oracle properties. J Am Statist Assoc. 2001;96:1348–1360. doi: 10.1198/016214501753382273
  • Candes E, Tao T. The Dantzig selector: statistical estimation when p is much larger than n (with discussion). Ann Statist. 2007;35:2313–2351. doi: 10.1214/009053606000001523
  • Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space. J R Statist Assoc B. 2008;70:849–911. doi: 10.1111/j.1467-9868.2008.00674.x
  • Fan J, Song R. Sure independence screening in generalized linear models with NP-dimensionality. Ann Statist. 2010;38:3567–3604. doi: 10.1214/10-AOS798
  • Zhu L-P, Li L, Li R, et al. Model-free feature screening for ultrahigh-dimensional data. J Am Statist Assoc. 2011;106:1464–1475. doi: 10.1198/jasa.2011.tm10563
  • Li R, Zhong W, Zhu L. Feature screening via distance correlation learning. J Am Statist. 2012;107:1129–1139. doi: 10.1080/01621459.2012.695654
  • Szèkely GJ, Rizzo ML, Barkirov NK. Measuring and testing dependence by correlation of distances. Ann Statist. 2007;35:2769–2794. doi: 10.1214/009053607000000505
  • Mai Q, Zou H. The Kolmogorov filter for variable screening in high-dimensional binary classification. Biometrika. 2013;100:229–234. doi: 10.1093/biomet/ass062
  • Mai Q, Zou H. The fused Kolmogorov filter: a nonparametric model-free screening method. Ann Statist. 2015;43:1471–1497. doi: 10.1214/14-AOS1303
  • Huang J, Horowitz JL, Ma S. Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann Statist. 2008;36:587–613. doi: 10.1214/009053607000000875
  • White H. Maximum likelihood estimation of misspecified models. Econometrica. 1982;50:1–26. doi: 10.2307/1912526
  • Albert A, Anderson JA. On the existence of maximum likelihood estimates in logistic regression models. Biometrika. 1984;71:1–10. doi: 10.1093/biomet/71.1.1
  • Firth D. Bias reduction of maximum likelihood estimates. Biometrika. 1993;80:27–38. doi: 10.1093/biomet/80.1.27
  • Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Statist Med. 2002;21:2409–2419. doi: 10.1002/sim.1047
  • Chang S-M, Chen R-B, Chi Y. Bayesian variable selections for probit model with componentwise Gibbs samplers. Commun Stat – Simul Comput. 2016;45:2752–2766. doi: 10.1080/03610918.2014.922983
  • Breslow N, Clayton D. Approximate inference in generalized linear mixed models. J Am Statist Assoc. 1993;88:9–25.
  • Breslow NE, Lin X. Bias correction in generalized linear mixed models with a single component of dispersion. Biometrika. 1995;82:81–91. doi: 10.1093/biomet/82.1.81
  • Lin X, Breslow NE. Bias correction in generalized linear mixed models with multiple components of dispersion. J Am Statist Assoc. 1996;91:1007–1016. doi: 10.1080/01621459.1996.10476971
  • Raudenbush S, Yang ML, Yosef M. Maximum likelihood for generalized linear models with nested random effects via high-order multivariate Laplace approximations. J Comput Graph Statist. 2000;9:141–157.
  • Zellner A. Applications of Bayesian analysis in econometrics. Statistician. 1983;32:23–34. doi: 10.2307/2987589
  • Baragatti M, Pommeret D. A study of variable selection using g-prior distribution with ridge parameter. J Comput Statist Data Anal. 2012;56:1920–1934. doi: 10.1016/j.csda.2011.11.017
  • Lee KE, Sha N, Dougherty ER, et al. Gene selection: a Bayesian variable selection approach. Bioinformatics. 2003;19:90–97. doi: 10.1093/bioinformatics/19.1.90
  • Yang A-J, Song X-Y. Bayesian variable selection for disease classification using gene expression data. Bioinformatics. 2010;26:215–222. doi: 10.1093/bioinformatics/btp638
  • Andrews DF, Mallows CL. Scale mixtures of normal distributions. J R Statist Asso B. 1974;36:99–102.
  • Stefanski LA. A normal scale mixture representation of the logistic distribution. Statist Probab Lett. 1990;11:69–70. doi: 10.1016/0167-7152(91)90181-P
  • Feller W. On the Kolmogorov–Smirnov limit theorems for empirical distributions. Ann Math Statist. 1949;19:1977–1989.
  • Amemiya T. Multivariate regression and simultaneous equations models when the dependent variables are truncated normal. Econometrica. 1974;42:999–1012. doi: 10.2307/1914214
  • Leppard P, Tallis GM. Algorithm AS 249: evaluation of the mean and covariance of the truncated multinormal distribution. Appl Statist. 1989;38:543–55. doi: 10.2307/2347752
  • Tallis GM. The moment generating function for the truncated multi-normal distribution. J R Stat Soc B. 1961;23:223–229.
  • Wihelm S, Manjunath BG. tmvtnorm: a package for the truncated multivariate normal distribution. R J. 2010;25–29.
  • Arnold BC, Beaver RJ. Hidden truncation models. Sankhya. 2000;62:23–35.
  • Liang F, Paulo R, Molina G, et al. Mixtures of g-priors for Bayesian variable selection. J Am Statist Assoc. 2008;103:410–423. doi: 10.1198/016214507000001337
  • R Core Team. R: A Language and Environment for Statistical Computing. 2013.
  • Chang S-M. Double shrinkage estimators for large sparse covariance matrices. J Statist Comput Simul. 2015;85:1497–1511. doi: 10.1080/00949655.2013.873042
  • Heinze G, Ploner M, Dunkler D, et al. logistf: Firth's bias reduced logistic regression, R J 2013.
  • Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286:531–537. doi: 10.1126/science.286.5439.531
  • Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Statist Assoc. 2002;97:77–87. doi: 10.1198/016214502753479248
  • Albert JH, Chib S. Bayesian analysis of binary and polychotomous response data. J Amer Statist Assoc. 1993;88:669–679. doi: 10.1080/01621459.1993.10476321
  • George EI, McCulloch RE. Variable selection via Gibbs sampling. J Am Statist Assoc. 1993;7:338–373.
  • O'Hara RBO, Sillanpää MJ. A review of Bayesian variable selection methods: what, how and which. Bayesian Anal. 2009;4:85–117. doi: 10.1214/09-BA403
  • Bickel PJ, Levina E. Some theory for Fisher's linear discriminant function, “naive Bayes”, and some alternatives when there are many more variables than observations. Bernoulli. 2004;10:989–1010. doi: 10.3150/bj/1106314847
  • Bickel PJ, Levina E. Regularized estimation of large covariance matrices. Ann Statist. 2008;36:199–227. doi: 10.1214/009053607000000758
  • Trefethen LN, David B. Numerical linear algebra. Philadelphia, PA: Society for Industrial and Applied Mathematics; 1997.
  • Chen R-B, Chu C-H, Lai T-Y, et al. Stochastic matching pursuit for Bayesian variable selection. Statist Comput. 2011;21:247–259. doi: 10.1007/s11222-009-9165-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.