242
Views
8
CrossRef citations to date
0
Altmetric
Articles

A new estimator of Kullback–Leibler information and its application in goodness of fit testsFootnote*

Pages 1914-1934 | Received 16 Nov 2018, Accepted 31 Mar 2019, Published online: 14 Apr 2019

References

  • Shannon CE. A mathematical theory of communications. Bell Syst Tech J. 1948;27:379–423; 623–656. doi: 10.1002/j.1538-7305.1948.tb01338.x
  • Vasicek O. A test for normality based on sample entropy. J Roy Stat Soc Ser B. 1976;38:54–59.
  • Hall P, Morton SC. On the estimation of entropy. Ann Inst Stat Math. 1993;45:69–88. doi: 10.1007/BF00773669
  • van Es B. Estimating functionals related to a density by class of statistics based on spacings. Scand J Stat. 1992;19:61–72.
  • Ebrahimi N, Pflughoeft K, Soofi E. Two measures of sample entropy. Stat Probab Lett. 1994;20:225–234. doi: 10.1016/0167-7152(94)90046-9
  • Correa JC. A new estimator of entropy. Commun Stat Theory Meth. 1995;24:2439–2449. doi: 10.1080/03610929508831626
  • Wieczorkowski R, Grzegorzewsky P. Entropy estimators improvements and comparisons. Commun Stat Simul Comput. 1999;28:541–567. doi: 10.1080/03610919908813564
  • Alizadeh Noughabi H. A new estimator of entropy and its application in testing normality. J Stat Comput Simul. 2010;80:1151–1162. doi: 10.1080/00949650903005656
  • Dudewicz EJ, Van der Meulen EC. Entropy-based tests of uniformity. J Am Stat Assoc. 1981;76:967–974. doi: 10.1080/01621459.1981.10477750
  • Gokhale DV. On entropy-based goodness-of-fit test. Comput Stat Data Anal. 1983;1:157–165. doi: 10.1016/0167-9473(83)90087-7
  • Arizono I, Ohta H. A test for normality based on Kullback–Leibler information. Am Stat. 1989;43:20–22.
  • Ebrahimi N, Habibullah M, Soofi E. Testing exponentiality based on Kullback–Leibler information. J Roy Stat Soc Ser B. 1992;54:739–748.
  • Alizadeh Noughabi H, Arghami NR. General treatment of goodness of fit tests based on Kullback–Leibler information. J Stat Comput Simul. 2013;83:1556–1569. doi: 10.1080/00949655.2012.667100
  • Mudholkar GS, Tian L. An entropy characterization of the inverse Gaussian distribution and related goodness-of-fit test. J Stat Plan Infer. 2002;102:211–221. doi: 10.1016/S0378-3758(01)00099-4
  • Choi B, Kim K. Testing goodness-of-fit for Laplace distribution based on maximum entropy. Statistics (Ber). 2006;40:517–531. doi: 10.1080/02331880600822473
  • Song KS. Limit theorems for nonparametric sample entropy estimators. Stat Probab Lett. 2000;49:9–18. doi: 10.1016/S0167-7152(00)00025-0
  • D’Agostino RB, Stephens MA. Goodness-of-fit Techniques. New York: Marcel Dekker; 1986.
  • Lemeshko BY, Gorbunova AA. Application of nonparametric Kuiper and Watson tests of goodness-of-fit for composite hypotheses. Meas Tech. 2013;56:965–973. doi: 10.1007/s11018-013-0314-y
  • Lemeshko BY, Lemeshko SB. Distribution models for nonparametric tests for fit in verifying complicated hypotheses and maximum-likelihood estimators. Part 1. Meas Tech. 2009a;52:555–565. doi: 10.1007/s11018-009-9330-3
  • Lemeshko BY, Lemeshko SB. Models for statistical distributions in nonparametric fitting tests on composite hypotheses based on maximum-likelihood estimators, Part II. Meas Tech. 2009b;52:799–812. doi: 10.1007/s11018-009-9353-9
  • Lemeshko BY, Lemeshko SB, Postovalov SN. Statistic distribution models for some nonparametric goodness-of-fit tests in testing composite hypotheses. Commun Stat Theory Meth. 2010;39:460–471. doi: 10.1080/03610920903140148
  • Lemeshko BY, Lemeshko SB. Construction of statistic distribution models for nonparametric goodness-of-fit tests in testing composite hypotheses: The computer approach. Qual Technol Quant Manag. 2011;8:359–373. doi: 10.1080/16843703.2011.11673263
  • Esteban MD, Castellanos ME, Morales D, et al. Monte Carlo comparison of four normality tests using different entropy estimates. Commun Stat Simul Comput. 2001;30:261–285. doi: 10.1081/SAC-100107780
  • Alizadeh Noughabi H, Arghami NR. Monte Carlo comparison of seven normality tests. J Stat Comput Simul. 2011a;81:965–972. doi: 10.1080/00949650903580047
  • Alizadeh Noughabi H, Arghami NR. Testing normality using transformed data. Commun Stat Theory Meth. 2011b;42:2365–2375.
  • Alizadeh Noughabi H, Arghami NR. Monte Carlo comparison of five exponentiality tests using different entropy estimates. J Stat Comput Simul. 2011c;81:1579–1592. doi: 10.1080/00949655.2010.496368
  • Duncan AJ. Quality Control and Industrial statistics. Homewood (IL): Irwin; 1974.
  • Puig P, Stephens MA. Tests of fit for the Laplace distribution with applications. Technometrics. 2000;42:417–424. doi: 10.1080/00401706.2000.10485715
  • Bain LJ, Englehardt M. Interval estimation for the two parameter double exponential distribution. Technometrics. 1973;15:875–887. doi: 10.1080/00401706.1973.10489120
  • von Alven WH. Reliability Engineering by ARINC. New Jersey: Prentice-Hall; 1964.
  • Chhikara RS, Folks JL. The inverse Gaussian distribution as a lifetime model. Technometrics. 1977;19:461–468. doi: 10.1080/00401706.1977.10489586
  • Mudholkar GS, Natarajan R, Chaubey YP. A goodness-of-fit test for the inverse Gaussian distribution using its independence characterization. Sankhya, Ser. B. 2001;63:362–374.
  • Lee S, Vonta L, Karagrigoriou A. A maximum entropy type test of fit. Comput Stat Data Anal. 2011;55:2635–2643. doi: 10.1016/j.csda.2011.03.012
  • Folks JL, Chhikara RS. The inverse Gaussian distribution and its statistical application-a review. J Roy Stat Soc Ser B. 1978;40:263–289.
  • O’Reilly FJ, Rueda R. Goodness of fit for the inverse Gaussian distribution. Can J Stat. 1992;20:387–397. doi: 10.2307/3315609
  • Pavur R, Edgeman R, Scott R. Quadratic statistics for the goodness-of-fit test of the inverse Gaussian distribution. IEEE Trans Reliab. 1992;41:118–123. doi: 10.1109/24.126682
  • Gunes H, Dietz DC, Auclair PF, et al. Modified goodness-of-fit tests for the inverse Gaussian distribution. Comput Stat Data Anal. 1997;24:63–77. doi: 10.1016/S0167-9473(96)00056-4
  • Henze N, Klar B. Goodness-of-fit tests for the inverse Gaussian distribution based on the empirical Laplace transform. Ann Inst Stat Math. 2002;54:425–444. doi: 10.1023/A:1022442506681
  • Grubbs FE. Fiducial bounds on reliability for the two parameter negative exponential distribution. Technometrics. 1971;13:873–876. doi: 10.1080/00401706.1971.10488858
  • Grane A, Fortiana J. A location- and scale-free goodness-of-fit statistic for the exponential distribution based on maximum correlations. Statistics (Ber). 2009;43:1–12. doi: 10.1080/02331880802187667
  • Lawless JF. Statistical models and methods for life-Time data. New York: Wiley; 1982.
  • Baratpour S, Habibi Rad A. Testing goodness-of-fit for exponential distribution based on cumulative residual entropy. Commun Stat Theory Meth. 2012;41:1387–1396. doi: 10.1080/03610926.2010.542857
  • Balakrishnan N, Ng HKT, Kannan N. Goodness-of-fit tests based on spacings for progressively Type-II censored data from a general location-scale distribution. IEEE Trans Reliab. 2004;53:349–356. doi: 10.1109/TR.2004.833317
  • Balakrishnan N, Habibi Rad A, Arghami NR. Testing exponentiality based on Kullback–leibler information with progressively Type-II censored data. IEEE Trans Reliab. 2007;56:301–307. doi: 10.1109/TR.2007.895308
  • Habibi Rad A, Yousefzadeh F, Balakrishnan N. Goodness-of-fit test based on Kullback–leibler information for progressively Type-II censored data. IEEE Trans Reliab. 2011;60:570–579. doi: 10.1109/TR.2011.2162470
  • Pakyari R, Balakrishnan N. A general purpose approximate goodness-of-fit test for progressively Type-II censored data. IEEE Trans Reliab. 2012;61:238–244. doi: 10.1109/TR.2012.2182811
  • Lin C-T, Huang Y-L, Balakrishnan N. A new method for goodness-of-fit testing based on Type-II right censored samples. IEEE Trans Reliab. 2008;57:633–642. doi: 10.1109/TR.2008.2005860
  • Pakyari R, Balakrishnan N. Goodness-of-fit tests for progressively Type-II censored data from location-scale distributions. J Stat Comput Simul. 2013;83:167–178. doi: 10.1080/00949655.2011.625424
  • Alizadeh Noughabi H, Balakrishnan N. Goodness of fit using a new estimate of Kullback–Leibler information based on Type II censored data. IEEE Trans Reliab. 2015;64:627–635. doi: 10.1109/TR.2014.2366763
  • Pardo L. Statistical inference based on divergence measures. New York (FL): Chapman & Hall/CRC Press; 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.