219
Views
4
CrossRef citations to date
0
Altmetric
Research Article

The empirical Bayes estimators of the rate parameter of the inverse gamma distribution with a conjugate inverse gamma prior under Stein's loss function

, ORCID Icon &
Pages 1504-1523 | Received 18 May 2020, Accepted 28 Nov 2020, Published online: 12 Dec 2020

References

  • Berger JO. Statistical decision theory and Bayesian analysis. 2nd ed. New York (NY): Springer; 1985.
  • Maritz JS, Lwin T. Empirical Bayes methods. 2nd ed. London: Chapman & Hall; 1989.
  • Carlin BP, Louis A. Bayes and empirical Bayes methods for data analysis. 2nd ed. London: Chapman & Hall; 2000.
  • Robbins H. An empirical Bayes approach to statistics. Proceedings of Third Berkeley Symposium on Mathematical Statistics and Probability; Vol. 1. University of California Press; 1955.
  • Robbins H. The empirical Bayes approach to statistical decision problems. Ann Math Stat. 1964;35:1–20.
  • Robbins H. Some thoughts on empirical Bayes estimation. Ann Stat. 1983;1:713–723.
  • Deely JJ, Lindley DV. Bayes empirical Bayes. J Am Stat Assoc. 1981;76:833–841.
  • Morris C. Parametric empirical Bayes inference: theory and applications. J Am Stat Assoc. 1983;78:47–65.
  • Maritz JS, Lwin T. Assessing the performance of empirical Bayes estimators. Ann Inst Stat Math. 1992;44:641–657.
  • Carlin BP, Louis A. Empirical Bayes: past, present and future. J Am Stat Assoc. 2000;95:1286–1290.
  • Pensky M. Locally adaptive wavelet empirical Bayes estimation of a location parameter. Ann Inst Stat Math. 2002;54:83–99.
  • Coram M, Tang H. Improving population-specific allele frequency estimates by adapting supplemental data: an empirical Bayes approach. Ann Appl Stat. 2007;1:459–479.
  • Efron B. Tweedie's formula and selection bias. J Am Stat Assoc. 2011;106:1602–1614.
  • van Houwelingen HC. The role of empirical Bayes methodology as a leading principle in modern medical statistics. Biom J. 2014;56:919–932.
  • Ghosh M, Kubokawa T, Kawakubo Y. Benchmarked empirical Bayes methods in multiplicative area-level models with risk evaluation. Biometrika. 2015;102:647–659.
  • Satagopan JM, Sen A, Zhou Q, et al. Bayes and empirical Bayes methods for reduced rank regression models in matched case-control studies. Biometrics. 2016;72:584–595.
  • Martin R, Mess R, Walker SG. Empirical Bayes posterior concentration in sparse high-dimensional linear models. Bernoulli. 2017;23:1822–1847.
  • Mikulich-Gilbertson SK, Wagner BD, Grunwald GK, et al. Using empirical Bayes predictors from generalized linear mixed models to test and visualize associations among longitudinal outcomes. Stat Methods Med Res. 2018;28:1399–1411.
  • Zhang YY, Rong TZ, Li MM. The empirical Bayes estimators of the mean and variance parameters of the normal distribution with a conjugate normal-inverse-gamma prior by the moment method and the MLE method. Commun Stat Theory Methods. 2019;48:2286–2304.
  • Zhang YY, Wang ZY, Duan ZM, et al. The empirical Bayes estimators of the parameter of the Poisson distribution with a conjugate gamma prior under Stein's loss function. J Stat Comput Simul. 2019;89:3061–3074.
  • Stein C. Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. Ann Inst Stat Math. 1964;16:155–160.
  • Maatta JM, Casella G. Developments in decision-theoretic variance estimation. Stat Sci. 1990;5:90–120.
  • Casella G, Berger RL. Statistical inference. 2nd ed. Pacific Grove: Duxbury; 2002.
  • James W, Stein C. Estimation with quadratic loss. Proc Fourth Berkeley Symp Math Stat Probab. 1961;1:361–380.
  • Brown LD. Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters. Ann Math Stat. 1968;39:29–48.
  • Brown LD. Comment on the paper by Maatta and Casella. Stat Sci. 1990;5:103–106.
  • Parsian A, Nematollahi N. Estimation of scale parameter under entropy loss function. J Stat Plan Inference. 1996;52:77–91.
  • Petropoulos C, Kourouklis S. Estimation of a scale parameter in mixture models with unknown location. J Stat Plan Inference. 2005;128:191–218.
  • Oono Y, Shinozaki N. On a class of improved estimators of variance and estimation under order restriction. J Stat Plan Inference. 2006;136:2584–2605.
  • Bobotas P, Kourouklis S. On the estimation of a normal precision and a normal variance ratio. Stat Methodol. 2010;7:445–463.
  • Zhang YY. The Bayes rule of the variance parameter of the hierarchical normal and inverse gamma model under Stein's loss. Commun Stat Theory Methods. 2017;46:7125–7133.
  • Xie YH, Song WH, Zhou MQ, et al. The Bayes posterior estimator of the variance parameter of the normal distribution with a normal-inverse-gamma prior under Stein's loss. Chin J Appl Probab Stat. 2018;34:551–564.
  • Zhang YY, Xie YH, Song WH, et al. Three strings of inequalities among six Bayes estimators. Commun Stat Theory Methods. 2018;47:1953–1961.
  • Robert CP. The Bayesian choice: from decision-theoretic motivations to computational implementation. 2nd paperback ed. New York (NY): Springer; 2007.
  • Xue Y, Chen LP. Statistical modeling and R software. Beijing: Tsinghua University Press; 2007.
  • Ross S. Simulation. 5th ed. Beijing: Mechanical Industry Press; 2013.
  • Conover WJ. Practical nonparametric statistics. New York (NY): John Wiley & Sons; 1971. p. 295–301 (one-sample Kolmogorov test), p. 309–314 (two-sample Smirnov test).
  • Durbin J. Distribution theory for tests based on the sample distribution function. Philadelphia: SIAM; 1973.
  • Marsaglia G, Tsang WW, Wang JB. Evaluating Kolmogorov's distribution. J Stat Softw. 2003;8:(18)445–463.
  • Dimitrova DS, Kaishev VK, Tan S. Computing the Kolmogorov–Smirnov distribution when the underlying CDF is purely discrete, mixed or continuous. University of London Institutional Repository; 2017.
  • Aldirawi H, Yang J, Metwally AA. Identifying appropriate probabilistic models for sparse discrete omics data. IEEE EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE; 2019.
  • Santitissadeekorn N, Lloyd DJB, Short MB, et al. Approximate filtering of conditional intensity process for Poisson count data: application to urban crime. Comput Stat Data Anal. 2020;144:1–14. Document Number 106850.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.