344
Views
5
CrossRef citations to date
0
Altmetric
Research Article

A flexible regression model for zero- and k-inflated count data

, & ORCID Icon
Pages 1815-1845 | Received 25 Jun 2020, Accepted 02 Jan 2021, Published online: 19 Jan 2021

References

  • Cohen AC. Estimating the parameters of a modified Poisson distribution. J Amer Statist Assoc. 1960;55:139–143.
  • Lambert D. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics. 1992;34:1–14.
  • Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc. 1977;39(1):1–38.
  • Yau K, Lee A. Zero-inflated Poisson regression with random effects to evaluate an occupational injury prevention programme. Stat Med. 2001;20:2907–2920.
  • Min Y, Agresti A. Random effect models for repeated measures of zero-inflated count data. Stat Model. 2005;5:1–19.
  • Ghosh SK, Mukhopadhyay P, Lu JC. Bayesian analysis of zero-inflated regression models. J Statist Plann Inference. 2006;136:1360–1375.
  • Agarwal DK, Gelfand AE, Citron-Pousty S. Zero-inflated models with application to spatial count data. Environ Ecol Stat. 2002;9:341–355.
  • Saffari SE, Adnan R. Zero-inflated Poisson regression models with right censored count data. Matematika. 2011;27:21–29.
  • Yang Y, Simpson DG. Conditional decomposition diagnostics for regression analysis of zero-inflated and left-censored data. Stat Methods Med Res. 2012;21:393–408.
  • Shankar V, Milton J, Mannering F. Modeling accident frequencies as zero-altered probability processes: an empirical inquiry. Accid Anal Prev. 1997;29(6):829–837.
  • Lee J, Mannering F. Impact of roadside features on the frequency and severity of run-off-roadway accidents: an empirical analysis. Accid Anal Prev. 2002;34:149–161.
  • Kumara SSP, Chin HC. Modeling accident occurrence at signalized tee intersections with special emphasis on excess zeros. Traffic Inj Prev. 2003;4:53–57.
  • Mullahy J. Specification and testing of some modified count data models. J Econ. 1986;33(3):341–365.
  • Greene W. Accounting for excess zeros and sample selection in Poisson and negative binomial regression models. New York University, Leonard N. Stern School of Business, Department of Economics; 1994.
  • Hall DB. Zero-inflated Poisson and binomial regression with random effects: a case study. Biometrics. 2000;56:1030–1039.
  • Yau KKW, Wang K, Lee AH. Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros. Biom J. 2003;45:437–452.
  • Ridout M, Hinde J, DeméAtrio CG. A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives. Biometrics. 2001;57:219–223.
  • Health Interview Survey National. 2015 National Health Interview Survey (NHIS) June 30, 2016 Public Use Data Release; 2019. Available from: https://www.cdc.gov/nchs/nhis/nhis_2015_data_release.htm
  • Lin TH, Tsai MH. Modeling health survey data with excessive zero and k responses. Stat Med. 2012;32:1572–1583.
  • Sheth-Chandra M, Chaganty N, Sabo R. A doubly-inflated poisson distribution and regression model. Cham: Springer; 2019. p. 131–145 (Chapter 7).
  • Zhang C, Tian GL, Ng K. Properties of the zero-and-one inflated Poisson distribution and likelihood-based inference methods. Stat Interface. 2016;9:11–32.
  • Alshkaki RSA. On the zero-one inflated Poisson distribution. Int J Stat Distrib Appl. 2016;2:42–48.
  • Tang Y, Liu W, Xu A. Statistical inference for zero-and-one-inflated poisson models. Stat Theory Relat Fields. 2017;1:216–226.
  • Sellers K, Shmueli G. Data dispersion: now you see it..now you don't. Commun Stat Theory Methods. 2013;42:1–14.
  • Conway RW, Maxwell WL. A queuing model with state dependent service rates. J Ind Eng. 1962;12:132–136.
  • Shmueli G, Minka TP, Kadane JB, et al. A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution. R Stat Soc Ser C (Appl Stat). 2005;54:127–142.
  • Sellers KF, Shmueli G. A flexible regression model for count data. Ann Appl Stat. 2010;4:943–961.
  • Sellers KF, Raim A. A flexible zero-inflated model to address data dispersion. Comput Stat Data Anal. 2016;99:68–80.
  • Sellers KF, Young DS. Zero-inflated sum of Conway–Maxwell–Poissons (ziscmp) regression. J Stat Comput Simul. 2019;89(9):1649–1673.
  • Sellers KF, Shmueli G, Borle S. The COM-Poisson model for count data: a survey of methods and applications. Appl Stoch Models Bus Ind. 2011;28:104–116.
  • Choo-Wosoba H, Levy SM, Datta S. Marginal regression models for clustered count data based on zero-inflated Conway–Maxwell–Poisson distribution with applications. Biometrics. 2016;72:606–618.
  • Barriga GD, Louzada F. The zero-inflated Conway–Maxwell–Poisson distribution: Bayesian inference, regression modeling and influence diagnostic. Stat Methodol. 2014;21:23–34.
  • SAS Institute Inc. SAS/ETS(R) 13.1 User's Guide; 2014. Available from: http://www.sas.com/
  • Sellers K, Lotze T, Raim A. COMPoissonReg: Conway–Maxwell Poisson (COM-Poisson) Regression, version 0.6.1; 2018. Available from: https://cran.r-project.org/web/packages/COMPoissonReg/index.html
  • R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. Available from: http://www.R-project.org
  • Burnham KP, Anderson DR. Model selection and multimodel inference. New York: Springer; 2002.
  • Chant D. On asymptotic tests of composite hypotheses in nonstandard conditions. Biometrika. 1974;61:291–298.
  • Shapiro A. Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints. Biometrika. 1985;72:133–144.
  • Akaike H. A new look at the statistical model identification. IEEE Trans Automat Control. 1974;19:716–723.
  • Dunn P, Smyth G. Randomized quantile residuals. J Comput Graph Stat. 1996;5:236–244.
  • Louis TA. Finding the observed information matrix when using the em algorithm. J R Stat Soc. 1982;44(2):226–233.
  • Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci. 1986;1(1):54–75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.