126
Views
4
CrossRef citations to date
0
Altmetric
Articles

Post-synthetic modification of divalent nickel acetate cubanes with carboxylatesFootnote

, , , , , & show all
Pages 626-641 | Received 29 Jul 2016, Accepted 03 Nov 2016, Published online: 26 Jan 2017

References

  • Publications on coordination-driven self-assembly, see: (a) M.J. Wiester, P.A. Ulmann, C.A. Mirkin. Angew. Chem., 123, 118 (2011); Angew. Chem. Int. Ed., 50, 114 (2011); 10.1002/ange.v123.1 (b) G.A. Timco, T.B. Faust, F. Tuna, R.E.P. Winpenny. Chem. Soc. Rev., 40, 3067 (2011); (c) B. Breiner, J.K. Clegg, J.R. Nitschke. Chem. Sci., 2, 51 (2011); (d) A. Cornia, M. Mannini, P. Sainctavit, R. Sessoli. Chem. Soc. Rev., 40, 3076 (2011); (e) D.-L. Long, R. Tsunashima, L. Cronin. Angew. Chem., 122, 1780 (2010); Angew. Chem. Int. Ed., 49, 1736 (2010); (f) M. Yoshizawa, J.K. Klosterman, M. Fujita. Angew. Chem., 121, 3470 (2009); Angew. Chem. Int. Ed., 48, 3418 (2009); (g) R.W. Saalfrank, H. Maid, A. Scheurer. Angew. Chem., 120, 8924 (2008); Angew. Chem. Int. Ed., 47, 8794 (2008); (h) G. Aromí, P. Gamez. J. Reedijk. Coord. Chem. Rev., 252, 964 (2008); (i) A.J. Tasiopoulos, S.P. Perlepes. Dalton Trans., 5537 (2008); (j) T.S. Koblenz, J. Wassenaar, J.N.H. Reek. Chem. Soc. Rev., 37, 247 (2008); (k) M. Albrecht, R. Fröhlich. Bull. Chem. Soc. Jpn., 80, 797 (2007); (l) G. Mezei, C.M. Zaleski, V.L. Pecoraro. Chem. Rev., 107, 4933 (2007); (m) M.D. Pluth, K.N. Raymond. Chem. Soc. Rev., 36, 161 (2007).
  • R. Breslow. Artificial Enzymes, Wiley-VCH, Weinheim (2005).10.1002/3527606645
  • cf.: (a) S. Kubik. Top. Curr. Chem., 319, 1 (2012); (b) D. Ajami. J. Rebek. Top. Curr. Chem., 319, 57 (2012); (c) R.W. Saalfrank, A. Scheurer. Top. Curr. Chem., 319, 125 (2012); (d) D.M. Vriezema, M.C. Aragonès, J.A.A.W. Elemans, J.J.L.M. Cornelissen, A.E. Rowan, R.J.M. Nolte. Chem. Rev., 105, 1445 (2005); (e) M. Yoshizawa, M. Tamura, M. Fujita. Science, 312, 251 (2006).
  • cf.: (a) A. Kitai. Luminescent Materials and Applications., John Wiley & Sons Ltd., Chichester (2008); 10.1002/9780470985687 (b) J. Cao, Y. Gao, Y. Wang, C. Du, Z. Liu. Chem. Commun., 49, 6897 (2013).
  • (a) C.H. Bennett, D.P. DiVincenzo. Nature, 404, 247 (2000); 10.1038/35005001 (b) M.N. Leuenberger, D. Loss. Nature, 410, 789 (2001); (c) W.A. Coish, D. Loss, arXiv: cond-mat 0606550 1 (2006); R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, A. Zeilinger. Nature, 445, 65 (2007).
  • Publications on single-molecule magnetism, cf.: (a) R. Sessoli, D. Gatteschi, A. Caneschi, M. Novak. Nature, 365, 141 (1993); 10.1038/365141a0 (b) K.L. Taft, G.C. Papaefthymiou, S.J. Lippard. Science, 259, 1302 (1993); (c) B. Barbara, L. Thomas, F. Lionti, I. Chiorescu, A. Sulpice. J. Magn. Magn. Mater., 200, 167 (1999); (d) D. Gatteschi, R. Sessoli. Angew. Chem., 115, 278 (2003); Angew. Chem. Int. Ed., 42, 268 (2003); (e) A.K. Boudalis, B. Donnadieu, V. Nastopoulos, J.M. Clemente-Juan, A. Mari, Y. Sanakis, J.-P. Tuchagues, S.P. Perlepes. Angew. Chem., 116, 2316 (2004); (f) L.M. Wittick, K.S. Murray, B. Moubaraki, S.R. Batten, L. Spiccia, K.J. Berry. Dalton Trans., 1003 (2004); (g) C.J. Milios, R. Inglis, A. Vinslava, R. Bagai, W. Wernsdorfer, S. Parsons, S.P. Perlepes, G. Christou, E.K. Brechin. J. Am. Chem. Soc., 129, 12505 (2007); (h) A.M. Ako, V. Mereacre, R. Clérac, W. Wernsdorfer, I.J. Hewitt, C.E. Anson, A.K. Powell. Chem. Commun., 544 (2009); (i) M. Murrie. Chem. Soc. Rev., 39, 1986 (2010).
  • Publications on single-molecule magnetism from our group, see: (a) A.F. Takács, M. Neumann, A.V. Postnikov, K. Kuepper, A. Scheurer, S. Sperner, R.W. Saalfrank, K.C. Prince. J. Chem. Phys., 124, 044503 (2006); 10.1063/1.2155340 (b) R.W. Saalfrank, A. Scheurer, R. Prakash, F.W. Heinemann, T. Nakajima, F. Hampel, R. Leppin, B. Pilawa, H. Rupp, P. Müller. Inorg. Chem., 46, 1586 (2007); (c) R.W. Saalfrank, C. Spitzlei, A. Scheurer, H. Maid, F.W. Heinemann, F. Hampel. Chem. Eur. J., 14, 1472 (2008); (d) K. Petukhov, M.S. Alam, H. Rupp, S. Strömsdörfer, P. Müller, A. Scheurer, R.W. Saalfrank, J. Kortus, A. Postnikov, M. Ruben, L.K. Thompson, J.-M. Lehn. Coord. Chem. Rev., 253, 2387 (2009); (e) A. Scheurer, A.M. Ako, R.W. Saalfrank, F.W. Heinemann, F. Hampel, K. Petukhov, K. Gieb, M. Stocker, P. Müller. Chem. Eur. J., 16, 4784 (2010); (f) N. Schmidt, A. Scheurer, S. Sperner, R.H. Fink. Z. Naturforsch., 65b, 390 (2010); (g) K. Kuepper, C. Taubitz, D. Taubitz, U. Wiedwald, A. Scheurer, S. Sperner, R.W. Saalfrank, J.-P. Kappler, L. Joly, P. Ziemann, M. Neumann. J. Phys. Chem. Lett., 2, 1491 (2011); (h) A. Scheurer, K. Gieb, M.S. Alam, F.W. Heinemann, R.W. Saalfrank, W. Kroener, K. Petukhov, M. Stocker, P. Müller. Dalton Trans., 41, 3553 (2012).
  • A. Scheurer, J. Korzekwa, T. Nakajima, F. Hampel, A. Buling, C. Derks, M. Neumann, L. Joly, K. Petukhov, K. Gieb, P. Müller, K. Kuepper, K. Meyer. Eur. J. Inorg. Chem., 1892 (2015).
  • see also: (a) T. Nakajima, K. Seto, A. Scheurer, B. Kure, T. Kajiwara, T. Tanase, M. Mikuriya, H. Sakiyama. Eur. J. Inorg. Chem., 5021 (2014); (b) T. Nakajima, K. Seto, F. Horikawa, I. Shimizu, A. Scheurer, B. Kure, T. Kajiwara, T. Tanase, M. Mikuriya. Inorg. Chem., 51, 12503 (2012); (c) R. Prakash, R.W. Saalfrank, H. Maid, A. Scheurer, F.W. Heinemann, A.X. Trautwein, L.H. Böttger. Angew. Chem., 118, 6017 (2006); Angew. Chem. Int. Ed., 45, 5885 (2006); (d) R.W. Saalfrank, T. Nakajima, N. Mooren, A. Scheurer, H. Maid, F. Hampel, C. Trieflinger. J. Daub. Eur. J. Inorg. Chem., 1149 (2005); (e) R.W. Saalfrank, C. Deutscher, S. Sperner, T. Nakajima, A.M. Ako, E. Uller, F. Hampel, F.W. Heinemann. Inorg. Chem., 43, 4372 (2004); (f) R.W. Saalfrank, C. Deutscher, H. Maid, A.M. Ako, S. Sperner, T. Nakajima, W. Bauer, F. Hampel, B.A. Heß, N.J.R. van Eikema Hommes, R. Puchta. F.W. Heinemann, Chem. Eur. J., 10, 1899 (2004); (g) R.W. Saalfrank, I. Bernt, F. Hampel, A. Scheurer, T. Nakajima, S.H.Z. Huma, F.W. Heinemann, M. Schmidtmann, A. Müller. Polyhedron, 22, 2985 (2003).
  • (a) M. Suga, F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita, M. Yamamoto, H. Ago, J.-R. Shen. Nature, 517, 99 (2015); (b) Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya. Nature, 473, 55 (2011); (c) H. Isobe, M. Shoji, S. Yamanaka, Y. Umena, K. Kawakami, N. Kamiya, J.-R. Shen, K. Yamaguchi. Dalton Trans., 41, 13727 (2012); (d) A. Galstyan, A. Robertazzi, E.W. Knapp. J. Am. Chem. Soc., 134, 7442 (2012); (e) A. Zouni, H.-T. Witt, J. Kern, P. Fromme, N. Krauß, W. Saenger, P. Orth. Nature, 409, 739 (2001).
  • (a) M.W. Kanan, D.G. Nocera. Science, 321, 1072 (2008); 10.1126/science.1162018 (b) S.Y. Reece, J.A. Hamel, K. Sung, T.D. Jarvi, A.J. Esswein, J.J.H. Pijpers, D.G. Nocera. Science, 334, 645 (2011); (c) G.F. Swiegers, J.K. Clegg, R. Stranger. Chem. Sci., 2, 2254 (2011); (d) M. Risch, K. Klingan, J. Heidkamp, D. Ehrenberg, P. Chernev, I. Zaharieva, H. Dau. Chem. Commun., 47, 11912 (2011); (e) P. Du, O. Kokhan, K.W. Chapman, P.J. Chupas, D.M. Tiede. J. Am. Chem. Soc., 134, 11096 (2012); (f) D.K. Bediako, Y. Surendranath, D.G. Nocera. J. Am. Chem. Soc., 135, 3662 (2013).
  • (a) N.S. McCool, D.M. Robinson, J.E. Sheats, G.C. Dismukes. J. Am. Chem. Soc., 133, 11446 (2011); 10.1021/ja203877y (b) J.G. McAlpin, T.A. Stich, C.A. Ohlin, Y. Surendranath, D.G. Nocera, W.H. Casey, R.D. Britt. J. Am. Chem. Soc., 133, 15444 (2011); (c) S. Berardi, G. La Ganga, M. Natali, I. Bazzan, F. Puntoriero, A. Sartorel, F. Scandola, S. Campagna, M. Bonchio. J. Am. Chem. Soc., 134, 11104 (2012); (d) A. Sartorel, M. Bonchio, S. Campagna, F. Scandola. Chem. Soc. Rev., 42, 2262 (2013); (e) A. Singh, L. Spiccia. Coord. Chem. Rev., 257, 2607 (2013); (f) P.F. Smith, C. Kaplan, J.E. Sheats, D.M. Robinson, N.S. McCool, N. Mezle, G.C. Dismukes. Inorg. Chem., 53, 2113 (2014).
  • Selected publications on post-synthetic modification, see: (a) S.J. Garibay, Z. Wang, K.K. Tanabe, S.M. Cohen. Inorg. Chem., 48, 7341 (2009); (b) Z. Wang, S.M. Cohen. Chem. Soc. Rev., 38, 1315 (2009); (c) K.K. Tanabe, S.M. Cohen. Chem. Soc. Rev., 40, 498 (2011); (d) A.D. Burrows. In: Metal Organic Frameworks as Heterogeneous Catalysts, F. Llabres i Xamena, J. Gascon (Eds.), Chap. 3, pp 31–75, RSC Catalysis Series, Cambridge (2013); (e) A. Dhakshinamoorthy, A.M. Asiri, H. García. Angew. Chem., 128, 5504 (2016); Angew. Chem. Int. Ed., 55, 5414 (2016); (f) A.M. Ullman, J.W. Brown, M.E. Foster, F. Léonard, K. Leong, V. Stavila, M.D. Allendorf. Inorg. Chem., 55, 7233 (2016).
  • As often observed in supramolecular systems, which exhibit a SMM behavior, small chemical or structural variations have fundamental impact on the magnetic properties: A. Cornia, A.C. Fabretti, P. Garrisi, C. Mortalò, D. Bonacchi, D. Gatteschi, R. Sessoli, L. Sorace, W. Wernsdorfer, A.-L. Barra. Angew. Chem., 116, 1156 (2004); Angew. Chem. Int. Ed., 43, 1136 (2004); 10.1002/(ISSN)1521-3757 (b) R.W. Saalfrank, A. Scheurer, I. Bernt, F.W. Heinemann, A.V. Postnikov, V. Schünemann, A.X. Trautwein, M.S. Alam, H. Rupp, P. Müller. Dalton Trans., 2865 (2006); (c) N.T. Madhu, J. Tang, I.J. Hewitt, R. Clérac, W. Wernsdorfer, J. van Slageren, C.E. Anson, A.K. Powell. Polyhedron, 24, 2864 (2005).
  • (a) R.W. Saalfrank, A. Scheurer, U. Reimann, F. Hampel, C. Trieflinger, M. Büschel, J. Daub, A.X. Trautwein, V. Schünemann, V. Coropceanu. Chem. Eur. J., , 11, 5843 (2005); 10.1002/(ISSN)1521-3765 (b) R.W. Saalfrank, A. Scheurer, K. Pokorny, H. Maid, U. Reimann, F. Hampel, F.W. Heinemann, V. Schünemann, A.X. Trautwein. Eur. J. Inorg. Chem., 1383 (2005).
  • We believe that the following reasons are the driving force for the carboxylate exchange: 1) the large excess of the sodium carboxylate. 2) The solubility of the formed sodium acetate in THF is much lower than this of the employed sodium carboxylate 4 (therefore sodium acetate remains in the precipitate), and the solubility of [NiII4(HL)4(O2CR)4] (3) in THF is higher in contrast to [NiII4(HL)4(OAc)4] (2a), which is rather insoluble. 3) By stirring the reaction mixture for an extended period, the partially carboxylate-exchanged supramolecular aggregates become gradually more and more lipophilic yielding finally cubane 3. Complexes 3 were found in the organic phase of the reaction mixture, which can be filtered off from the colorless filter cake of the formed sodium acetate and remaining 4. These considerations are further supported by an attempted exchange reaction of the acetate co-ligands in 2 by sodium butyrate. Single-crystalline cubes, obtained from a THF solution of the crude reaction product by gas vapor diffusion of diethyl ether, were analyzed by X-ray structure determination. Contrary to the previous results, only two face-to-face acetate ligands were exchanged by two apparently insufficient lipophilic butyrate co-ligands. The crystal contained reproducibly the two compounds [Ni4(HL)4(O2CC3H7)2(OAc)2] and [Ni4(HL)4(OAc)4] (2) in a 1:1 ratio with the terminal C3H7 groups of the asymmetric unit being occupied by only 50% [29].
  • Various attempts were undertaken in order to generate complexes analogous to 3 under different conditions, which remained to date unsuccessful. For instance, stirring of NiX2 hydrate (X = OAc–, Cl–, Br–, NO3–) in the presence of an excess or stoichiometric amount of a sodium carboxylate and subsequent addition of 2,6-pyridinedimethanol in different concentrations and solvent systems led to undefined reaction mixtures, which could not be purified.
  • For details of crystal data, data collection and refinement, see Table 3 and the single-crystal X-ray structure analyses part in the experimental section.
  • CCDC-1495920 (for 3a·2 Et2O), 1495921 (for 3b·0.5 CH2Cl2·0.5 Et2O) and 1495922 (for [Ni4(HL)4(O2CC3H7)2(OAc)2]·[Ni4(HL)4(OAc)4] [29]) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
  • (a) S. Saha, S. Pal, C.J. Gómez-García, J.M. Clemente-Juan, K. Harms, H.P. Nayek. Polyhedron, 74, 1 (2014); 10.1016/j.poly.2014.02.036 (b) S.-S. Qian, Y. Zhao, M.-M. Zhen, C.-L. Zhang, Z.-L. You, H.-L. Zhu. Transition Met. Chem., 38, 63 (2013); (c) S. Shit, M. Nandy, G. Rosair, C.J. Gómez-García, J.J.B. Almenar, S. Mitra. Polyhedron, 61, 73 (2013); (d) S.-Y. Zhang, W.-Q. Chen, B. Hu, Y.-M. Chen, W. Li, Y. Li. Inorg. Chem. Commun., 16, 74 (2012); (e) K.I. Alexopoulou, C.P. Raptopoulou, V. Psycharis, A. Terzis, V. Tangoulis, T.C. Stamatatos, S.P. Perlepes. Aust. J. Chem., 65, 1608 (2012); (f) C.-B. Tian, H.-B. Zhang, Y. Peng, Y.-E. Xie, P. Lin, Z.-H. Li, S.-W. Du. Eur. J. Inorg. Chem., 4029 (2012); (g) L.A. Kushch, V.D. Sasnovskaya, E.B. Yagubskii, S.S. Khasanov, S.V. Simonov, R.P. Shibaeva, A.V. Korolev, D.V. Starichenko, A.O. Anokhin, VYu Irkhin, Y.N. Shvachko. Inorg. Chim. Acta, 378, 169 (2011); (h) Q. Liang, R. Huang, X. Chen, Z. Li, X. Zhang, B. Sun. Inorg. Chem. Commun., 13, 1134 (2010); (i) G. Aromí, A.S. Batsanov, P. Christian, M. Helliwell, O. Roubeau, G.A. Timco, R.E.P. Winpenny. Dalton Trans., 4466 (2003).
  • (a) T. Steiner. Angew. Chem., 114, 50 (2002); Angew. Chem. Int. Ed., 41, 48 (2002); 10.1002/(ISSN)1521-3757 (b) G.R. Desiraju. Acc. Chem. Res., 35, 565 (2002); (c) S. Melandri. Phys. Chem. Chem. Phys., 13, 13901 (2011); (d) A.V. Nizovtsev, A. Scheurer, B. Kosog, F.W. Heinemann, K. Meyer. Eur. J. Inorg. Chem., 2538 (2013).
  • (a) C.A. Hunter, J.K.M. Sanders. J. Am. Chem. Soc., 112, 5525 (1990); 10.1021/ja00170a016 (b) C. Janiak. J. Chem. Soc., Dalton Trans., 3885 (2000); (c) A. Iida, S. Yamaguchi. Chem. Commun., 3002 (2009); (d) S. Hayami, K. Hiki, T. Kawahara, Y. Maeda, D. Urakami, K. Inoue, M. Ohama, S. Kawata, O. Sato. Chem. Eur. J., 15, 3497 (2009); (e) X.-X. Zhao, J.-P. Ma, D.-Z. Shen, Y.-B. Dong, R.-Q. Huang. CrystEngComm, 11, 1281 (2009) [20e,f]; for recent examples of our group on π–π interactions creating supramolecular aggregates in the solid state, see [7e, 8, 9a]; (f) L. Plasseraud, A. Scheurer, F. Hampel. Z. Naturforsch., 62b, 799 (2007).
  • (a) S. Zhang, W. Chen, B. Hu, Y. Chen, L. Zheng, Y. Li, W. Li. J. Coord. Chem., 65, 4147 (2012); 10.1080/00958972.2012.735364 (b) B. Terfassa, C. Holzer, J.A. Schachner, P. Cias, H. Krenn, F. Belaj, N.C. Mösch-Zanetti. J. Coord. Chem., 69, 433 (2016); (c) H. Golchoubian, S. Kazemi. J. Coord. Chem., 69, 447 (2016).
  • H.-Y. Zhang, Y. Li, W. Wang, X. Zhang, J.-M. Wang, S.-H. Zhang. J. Coord. Chem., 69, 1938 (2016).10.1080/00958972.2016.1195493
  • G.R. Fulmer, A.J.M. Miller, N.H. Sherden, H.E. Gottlieb, A. Nudelman, B.M. Stoltz, J.E. Bercaw, K.I. Goldberg. Organometallics, 29, 2176 (2010).10.1021/om100106e
  • G.M. Sheldrick, SHELXTL NT, v. 6.12, Bruker AXS, Inc., Madison, WI (2002).
  • G.M. Sheldrick. Acta Cryst, A64, 112 (2008).10.1107/S0108767307043930
  • G.M. Sheldrick. SADABS, v. 2.10, Bruker AXS, Inc., Madison, WI (2003) and SADABS, v. 2008/1, Bruker AXS, Inc., Madison, WI (2008).
  • NiII complexes [Ni4(HL)4(O2CC3H7)2(OAc)2]·[Ni4(HL)4(OAc)4] crystallize as green blocks. Crystal data: C38H48N4Ni4O16, Mr = 1051.64 gmol−1; crystal dimensions 0.16×0.12×0.12 mm3; monoclinic, space group C2/c, a = 17.498(2), b = 13.948(1), c = 16.863(2) Å, α = γ = 90, β = 91.998(1)°, V = 4112.9(5) Å3; Z = 4; F(000) = 2176, ρcalcd = 1.698 gcm−3; Bruker Kappa APEX 2 /μS Duo diffractometer, MoKα radiation (λ = 0.71073 Å); T = 100(2) K; QUAZAR focusing Montel optics; θ range 5.8 ≤ 2θ ≤ 55.8°; section of the reciprocal lattice: –22 ≤ h ≤ 22, –18 ≤ k ≤ 18, –22 ≤ l ≤ 20. A semiempirical absorption correction based on multiple scans was applied (SADABS 2008/1 [28]; Tmin = 0.696, Tmax = 0.746); of 36722 measured reflections, 4902 were independent and 4319 had (Fo ≥ 4.0σ(F)); linear absorption coefficient 1.881 mm−1. The structure was solved by direct methods using SHELXTL NT 6.12 and refinement was performed with all data (298 parameters) by blocked matrix least-squares on F2 using SHELXL 2014/6 [27]. All non-hydrogen atoms were refined anisotropically; R1 = 0.0281 for I > 2σ(I) and wR2 = 0.0759 (all data); largest peak (0.525 eÅ−3) and hole (–0.359 eÅ−3). The positions of the O bound hydrogen atoms were taken from a difference fourier synthesis and their positional parameters were refined. All other hydrogen atoms were placed in positions of optimized geometry. The isotropic displacement parameters of all H atoms were tied to those of their corresponding carrier atoms by a factor of 1.2 or 1.5. The crystal contained the two compounds [Ni4(HL)4(O2CC3H7)2(O2CCH3)2]·[Ni4(HL)4(O2CCH3)4] in a 1:1 ratio with the terminal C3H7 groups of the asymmetric unit being occupied by only 50%. The complex molecule is situated on a crystallographic twofold rotation axis (Wyckoff position 4e) and possesses C2 molecular symmetry.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.