436
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

MODELING, OPTIMIZATION, AND CONTROL OF REVERSE OSMOSIS WATER TREATMENT IN KAZEROON POWER PLANT USING NEURAL NETWORK

, &

References

  • Abbas , A. ( 2006 ). Model predictive control of a reverse osmosis desalination unit , Desalination , 194 , 268 – 280 .
  • Al-Abri , M. , and Hilal , N. ( 2008 ). Artificial neural network simulation of combined humic substance coagulation and membrane filtration , Chem. Eng. J. , 141 , 27 – 34 .
  • Al-Zoubi , H. , Hilal , N. , Darwish , N. A. , and Mohammad , A. W. ( 2007 ). Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: Neural network and Spiegler–Kedem model , Desalination , 206 , 42 – 60 .
  • Aydiner , C. , Demir , I. , Keskinler , B. , and Ince , O. ( 2010 ). Joint analysis of transient flux behaviors via membrane fouling in hybrid PAC/MF processes using neural network , Desalination , 250 , 188 – 196 .
  • Baroutian , S. , Aroua , M. K. , Raman , A. A. A. , and Sulaiman , N. M. N. ( 2010 ). Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling , Sep. Purif. Technol. , 76 , 58 – 63 .
  • Bowen , W. R. , Jones , M. G. , and Yousef , H. N. S. ( 1998 ). Prediction of the rate of crossflow membrane ultrafiltration of colloids: A neural network approach , Chem. Eng. Sci. , 53 , 3793 – 3802 .
  • Bowen , W. R. , Jones , M. G. , Welfoot , J. S. , and Yousef , H. N. S. ( 2000 ). Predicting salt rejections at nanofiltration membranes using artificial neural networks , Desalination , 129 , 147 – 162 .
  • Chakraborty , M. , Bhattacharya , C. , and Dutta , S. ( 2003 ). Studies on the applicability of artificial neural network (ANN) in emulsion liquid membranes , J. Membr. Sci. , 220 , 155 – 164 .
  • Chen , H. , and Kim , A. S. ( 2006 ). Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: A radial basis function neural network approach , Desalination , 192 , 415 – 428 .
  • Chen , X. , and Wang , N. ( 2009 ). A DNA based genetic algorithm for parameter estimation in the hydrogenation reaction , Chem. Eng. J. , 150 , 527 – 535 .
  • Curcio , S. , Calabrò , V. , and Iorio , G. ( 2006 ). Reduction and control of flux decline in cross-flow membrane processes modeled by artificial neural networks , J. Membr. Sci. , 286 , 125 – 132 .
  • Curcio , S. , Calabrò , V. , and Iorio , G. ( 2009 ). Reduction and control of flux decline in cross-flow membrane processes modeled by artificial neural networks and hybrid systems , Desalination , 236 , 234 – 243 .
  • Darwish , N. A. , Hilal , N. , Al-Zoubi , H. , and Mohammad , A. W. ( 2007 ). Neural networks simulation of the filtration of sodium chloride and magnesium chloride solutions using nanofiltration membranes , Chem. Eng. Res. Des. , 85 , 417 – 430 .
  • Fu , R. Q. , Xu , T. W. , and Pan , Z. X. ( 2005 ). Modelling of the adsorption of bovine serum albumin on porous polyethylene membrane by back-propagation artificial neural network , J. Membr. Sci. , 251 , 137 – 144 .
  • Giralt , F. , Arenas , A. , Ferre-Gine , J. , Rallo , R. , and Kopp , G. A. ( 2000 ). The simulation and interpretation of turbulence with a cognitive neural system , Phys. Fluids , 12 ( 7 ), 1826 – 1835 .
  • Hagan , M. T. , Demuth , H. B. , and Beale , M. ( 1996 ). Neural Network Design , PWS Publishing Co. , Boston .
  • Jamal , K. , Khan , M. A. , and Kamil , M. ( 2004 ). Mathematical modeling of reverse osmosis systems , Desalination , 160 , 29 – 42 .
  • Lee , Y. G. , Lee , Y. S. , Jeon , J. J. , Lee , S. , Yang , D. R. , Kim , I. S. , and Kim , J. H. ( 2009 ). Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant , Desalination , 247 , 180 – 189 .
  • Libotean , D. , Giralt , J. , Giralt , F. , Rallo , R. , Wolfe , T. , and Cohen , Y. ( 2009 ). Neural network approach for modeling the performance of reverse osmosis membrane desalting , J. Membr. Sci. , 326 , 408 – 419 .
  • Liu , Q. F. , and Kim , S. H. ( 2008 ). Evaluation of membrane fouling models based on bench-scale experiments: A comparison between constant flow rate blocking laws and artificial neural network (ANNs) model , J. Membr. Sci. , 310 , 393 – 401 .
  • Liu , Q. F. , Kim , S. H. , and Lee , S. ( 2009 ). Prediction of microfiltration membrane fouling using artificial neural network models , Sep. Purif. Technol. , 70 , 96 – 102 .
  • Madaeni , S. S. , and Kurdian , A. R. ( 2011 ). Fuzzy modeling and hybrid genetic algorithm optimization of virus removal from water using microfiltration membrane , Chem. Eng. Res. Des. , 89 ( 4 ), 456 – 470 .
  • Madaeni , S. S. , Tavajohi Hasankiadeh , N. , Kurdian , A. R. , and Rahimpour , A. ( 2010 ). Modeling and optimization of membrane fabrication using artificial neural network and genetic algorithm , Sep. Purif. Technol. , 76 , 33 – 43 .
  • Niemi , H. , Bulsari , A. , and Palosaari , S. ( 1995 ). Simulation of membrane separation by neural networks , J. Membr. Sci. , 102 , 185 – 191 .
  • Quintanilla , V. Y. , Verliefde , A. , Kim , T.-U. , Sadmani , A. , Kennedy , M. , and Amy , G. ( 2009 ). Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes , J. Membr. Sci. , 342 , 251 – 262 .
  • Rai , P. , Majumdar , G. C. , DasGupta , S. , and De , S. ( 2005 ). Modeling the performance of batch ultrafiltration of synthetic fruit juice and mosambi juice using artificial neural network , J. Food Eng. , 71 ( 3 ), 273 – 281 .
  • Rajasekaran , S. , and Pai , G. A. V. ( 2007 ). Neural Networks, Fuzzy Logic, and Genetic Algorithms , Prentice-Hall , New Delhi , India .
  • Rallo , R. , Ferre-Gine , J. , Arenas , A. , and Giralt , F. ( 2002 ). Neural virtual sensor for the inferential prediction of product quality from process variables , Comput. Chem. Eng. , 26 , 1735 – 1754 .
  • Sahoo , G. B. , and Ray , C. ( 2006 ). Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms , J. Membr. Sci. , 283 , 147 – 157 .
  • Sargolzaei , J. , Khoshnoodi , M. , Saghatoleslami , N. , and Mousavi , M. (2008). Fuzzy inference system to modeling of crossflow milk ultrafiltration, Appl. Soft Comput. , 8, 456–465.
  • Shahsavand , A. , and Chenar , M. P. ( 2007 ). Neural networks modeling of hollow fiber membrane processes , J. Membr. Sci. , 297 , 59 – 73 .
  • Shetty , G. R. , and Chellam , S. ( 2003 ). Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks , J. Membr. Sci. , 217 , 69 – 86 .
  • Shokrian , M. , Sadrzadeh , M. , and Mohammadi , T. ( 2010 ). C3H8 separation from CH4 and H2 using a synthesized PDMS membrane: Experimental and neural network modeling , J. Membr. Sci. , 346 , 59 – 70 .
  • Sitte , R. , and Sitte , J. ( 2005 ). Neural network system technology in the analysis of financial time series , in: Neural Networks, Fuzzy Theory and Genetic Algorithms , ed. T. L. Cornelius , 59 – 110 , Kluwer Academic Publishers , Mumbai .
  • Wang , L. , Shao , C. , Wang , H. , and Wu , H. ( 2006 ). Radial basis function neural networks-based modeling of the membrane separation process: Hydrogen recovery from refinery gases , J. Nat. Gas Chem. , 15 , 230 – 234 .
  • Zhao , Y. , Taylor , J. S. , and Chellam , S. ( 2005 ). Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks , J. Membr. Sci. , 263 , 38 – 46 .
  • Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/gcec.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.