205
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Biosorptive Removal of Cadmium (II) Ions from Aqueous Solution by Chemically Modified Onion Skin: Batch Equilibrium, Kinetic and Thermodynamic Studies

, &

References

  • Agarry, S. E., and Aremu, M. O. (2012). Batch equilibrium and kinetic studies of simultaneous adsorption and biodegradation of phenol by pineapple peels immobilized Pseudomonas aeruginosa NCIB 950, Br. Biotechnol. J., 2, 26–48.
  • Agarry, S. E., Owabor, C. N., and Ajani, A. O. (2013). Modified plantain peel as cellulose-based low-cost adsorbent for the removal of 2, 6-dichlorophenol from aqueous solution: Adsorption isotherms, kinetic modelling and thermodynamic studies, Chem. Eng. Commun., 200, 1121–1147.
  • Ajaelu, C. I., Ibironke, O. L., Adedeji, V., and Olafisoye, O. (2011). Equilibrium and kinetic studies of the biosorption of heavy metal (cadmium) on Cassia siamen bark, American-Eurasian J. Sci. Res., 6, 123–130.
  • Al-Dujaili, A. H., Awwad, A. M., and Salem, N. M. (2012). Biosorption of cadmium (II) onto loquat leaves (Eriobotrya japonica) and their ash from aqueous solution, equilibrium, kinetics, and thermodynamic studies, Int. J. Ind. Chem., 3, 22–28.
  • Ali, S.-Z., Athar, M., Farooq, U., and Salman, M. (2013). Insight into equilibrium and kinetics of the binding of cadmium ions on radiation-modified straw from Oryza sativa, J. Appl. Chem., 2013, 1–13.
  • Al-Othman, Z. A., Hashem, A., and Habila, M. A. (2011). Kinetic, equilibrium and thermodynamic studies of cadmium (II) adsorption by modified agricultural wastes, Molecules, 16, 10443–10456.
  • Anirudhan, T. S., and Radhakrishnan, P. G. (2008). Thermodynamics and kinetics of adsorption of Cu (II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell, J. Chem. Thermodyn., 40, 702–709.
  • Annadurai, G., Chellapandian, M., and Krishnan, M. R. V. (1997). Adsorption of basic dye from aqueous solution by chitosan: equilibrium studies, Indian J. Environ. Prot., 17, 95–98.
  • Ata, S., Wattoo, F. H., Sidra, L. R., Wattoo, M. H. S., Tirmizi, S. A., Din, I., and Mohsin, I. (2012). Biosorptive removal of lead and cadmium ions from aqueous solution. The use of carrot residues as low cost non-conventional adsorbent, Turk. J. Biochem., 37, 272–279.
  • Asma, S., Washeed, A. M., and Muhammed, I. (2005). Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent, Sep. Purif. Technol., 45, 2531.
  • Awwad, A. M., and Farhan, A. M. (2012). Equilibrium, kinetic and thermodynamics of biosorption of lead (II), copper (II) and cadmium (II) ions from aqueous solutions onto olive leaves powder, Am. J. Chem., 2, 238–244.
  • Badmus, M. A. O., Audu, T. O. K., and Anyata, B. U. (2007). Removal of lead ion from industrial wastewaters by activated carbon prepared from periwinkle shells (Tympanotonus fuscatus), Turk. J. Eng. Environ. Sci., 31, 251–263.
  • Baek, M. H., Ijagbemi, C. O., Se-Jin, O., and Kim, D. S. (2010). Removal of Malachite Green from aqueous solution using degreased coffee bean, J. Hazard. Mater., 176, 820–828.
  • Bajpai, S. K., and Jain, A. (2010). Removal of copper (II)from aqueous solution using spent tea leaves (STL) as a potential sorbent, Water SA, 36, 221–228.
  • Banker, D. B., and Dara, S. S. (1982). Binding of calcium and magnesium by modified onion skin, J. Appl. Polym. Sci., 5, 1727–1733.
  • Basha, S., and Jha, B. (2008). Estimation of isotherm parameters for biosorption of Cd (II) and Pb (II) onto brown seaweed, Lobophora variegate, J. Chem. Eng. Data, 53, 449–455.
  • Blázquez, G., Hernáinz, F., Calero, M., and Ruiz-Núñez, L. F. (2005). Removal of cadmium ions with olive stones: the effect of some parameters, Process Biochem., 40, 2649–2654.
  • Bulut, Y., and Tez, Z. (2007). Removal of heavy metals from aqueous solution by sawdust adsorption, J. Environ. Sci., 19, 160–166.
  • Chan, L. S., Cheung, W. H., Allen, S. H., and McKay, G. (2012). Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon, Chin. J. Chem. Eng., 20, 535–542.
  • Chen, A.-H., and Chen, S.-M. (2009). Biosorption of azo dyes from aqueous solution by glutaraldehyde-crosslinked chitosans, J. Hazard. Mater., 172, 1111–1121.
  • Chen, Z., Ma, W., and Han, M. (2008). Biosorption of nickel and copper onto treated alga (Undariapinnarlifida): Application of isotherm and kinetic models, J. Hazard. Mater., 155, 327–333.
  • Chowdhury, A., Bhowal, A., and Datta, S. (2012). Equilibrium, thermodynamic and kinetic studies for removal of copper (II) from aqueous solution by onion and garlic skin, Water, 4, 37–51.
  • Crisafully, R., Milhome, M. A., Cavalcante, R. M., Silveira, E. R., Keukeleire, D., and Nascimento, F. (2008). Removal of some polycyclic aromatic hydrocarbons from petrochemical waste water using low-cost adsorbents of natural origin, Bioresour. Technol., 99, 4515–4519.
  • Cruz, C. C. V., Antonio, C. A., Henriques, C. A., and Luna, A. S. (2004). Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. Biomass, Bioresour. Technol., 91, 249–257.
  • Dubinin, M. M., Zaverina, E. D., and Radushkevich, L. V. (1947). Sorption and structure of active carbons. Adsorption of organic vapors, J. Phy. Chem., 21, 1351–1362.
  • Espinola, A., Adamian, R., and Gomes, L. M. B. (1999). An innovative technology: natural coconut fibre as adsorptive medium in industrial waste water cleanup, Waste Treat Clean Technol. Proc., 3, 2057–2066.
  • Farhan, A. M., Salem, N. M., Al-Dujaili, A. H., and Awwad, A. M. (2012). Biosorption of Cr(IV) ions from electroplating wastewater by walnut shell powder, Am. J. Environ. Eng., 2, 188–195.
  • Freundlich, H. M. F. (1906). Over the adsorption in solution, J. Phys. Chem., 57, 385–471.
  • Fritz, W., and Schluender, E. U. (1974). Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon, Chem. Eng. Sci., 29, 1279–1282.
  • Giwa, A. A., Bello, I. A., Oladipo, M. A., and Adeoye, D. O. (2013). Removal of cadmium from wastewater by adsorption using the husk of melon (Citrullus lanatus) seed, Int. J. Basic Appl. Sci., 2, 110–123.
  • Guiqiu, C., Guangming, Z., Lin, T., Chunyan, D., Xiaoyun, J., Guohe, H., Hongliang, L., and Guoli, S. (2008). Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes, Bioresour. Technol., 99, 7034–7040.
  • Hamad, B. K., Noor, A.-Md., and Rahim, A. A. (2011). Removal of 4-chloro-2-methoxyphenol from aqueous solution by adsorption to oil palm shell activated carbon activated with K2CO3, J. Phys. Sci., 22, 39–55.
  • Hameed, B. H., and Ahmad, A. A. (2009). Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass, J. Hazard. Mater., 164, 870–875.
  • Hameed, B. K., Mahmoud, D. K., and Ahmad, A. L. (2008). Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste, J. Hazard. Mater., 158, 65–72.
  • Hameed, B. H., Ahmad, A. A., and Aziz, N. (2007). Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash, Chem. Eng. J., 133, 195–203.
  • Ho, Y. S., and Mckay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 34, 735–742.
  • Ho, Y. S., Porter, J. F., and Mckay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems, Water Air Soil Pollut., 141, 1–33.
  • Itodo, A. U., and Itodo, H. U. (2010). Sorption energies estimation using Dubinin–Radushkevich and Temkin adsorption isotherms, Life Sci. J., 7, 31–39.
  • Jamali, H. A., Mahvi, A. H., and Nazmara, S. (2009). Removal of cadmium from aqueous solution by hazelnut shell, World Appl. Sci. J., 5, 16–20.
  • Kannan, N., and Veemaraj, T. (2009). Removal of Lead (II) Ions by adsorption onto bamboo dust and commercial activated carbons – a comparative study, E-J. Chem., 6, 247–256.
  • Kefala, M. I., Zouboulis, A. I., and Matis, K. A. (1999). Biosorption of cadmium ions by actinomycetes and separation by flotation, Environ. Pollut., 104, 283–293.
  • Khan, A. R., Ataullah, R., and Al-Haddad, A. (1997). Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures, J. Colloid Interface Sci., 194, 154–165.
  • Koyuncu, H. (2008). Adsorption kinetics of 3-hydroxybenzaldehyde on native and activated bentonite, Appl. Clay Sci., 38, 279–287.
  • Kumar, P., and Dara, S. S. (1981). Binding metal ions with polymerized onion skin, J. Polym. Sci., 19, 397–402.
  • Kundu, S., and Gupta, A. K. (2006). Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization, Chem. Eng. J., 122, 93–106.
  • Lagergren, S. (1898). Zur theorie der sogenannte, adsorption geloster stoffe, Kungliga Svenska vetenskap-sakademiens, HAndlingar, 24, 1–39.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40, 361–1368.
  • Li, Y., Chen, B., and Zhu, L. (2010). Enhanced sorption of polycyclic aromatic hydrocarbons from aqueous solution by modified pine bark, Bioresour. Technol., 101, 7307–7313.
  • Liu, Y., and Liu, Y. J. (2008). Biosorption isotherms, kinetics and thermodynamics, Sep. Purif. Technol., 61, 229–242.
  • Low, K. S., Lee, C. K., and Liew, S. C. (2000). Adsorption of cadmium and lead from aqueous solutions by spent grain, Process Biochem., 36, 59–64.
  • Mahvi, A. H., Nabizadeh, R., Gholami, F., Nuri, J., and Kaeiri, A. (2010). Biosorption of cadmium from aqueous solution by Ulmus leaves and their ash, Eur. J. Technol. Adv. Eng. Res., 1, 4–11.
  • Maleki, A., Mahvi, A. H., Zazouli, M. A., Izanloo, H., and Barati, H. (2011). Aqueous cadmium removal by adsorption on barley hull and barley hull ash, Asian J. Chem., 23, 1373–1376.
  • Mansour, M. S., Ossman, M. E., and Farag, H. A. (2011). Removal of Cd (II) ion from waste water by adsorption onto polyaniline coated on sawdust, Desalination, 272, 301–305.
  • McKay, G., Allen, S. J., and McConvey, I. F. (1982). The adsorption of dyes from solution – equilibrium and column studies, Water Air Soil Pollut., 21, 127–129.
  • Meneghel, A. P., Goncalves Jr., A. C., Rubio, F., Dragunski, D. C., and Lindini, C. A. (2013). Biosorption of cadmium from water using Moringa (Moringa oleifera) seeds, Water Air Soil Pollut., 224, 1383–1395.
  • Ncibi, M. C. (2008). Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis, J. Hazard. Mater., 153, 207–212.
  • Neto, V. S., Carvalho, T. V., Honorato, S. B., Gomes, C. L., Barros, F. C. F., Araújo-Silva, M. A., Freire, P. T. C., and Nascimento, R. F. (2012). Coconut bagasse treated by thiourea/ammonia solution for cadmium removal: kinetics and adsorption equilibrium, BioResources, 7, 1504–1524.
  • Nouri, L., Ghodbane, I., Hamdaoui, O., and Chiha, M. (2007). Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran, J. Hazard. Mater., 149, 115–125.
  • Okoye, I. P., and Obi, C. (2012). Thermodynamic and kinetic evaluations of some heavy metal ions on aluminum-pillared and unpillared bentonite clays, Int. Arch. Appl. Sci. Technol., 3, 58–67.
  • Ossman, M. E., and Mansour, M. S. (2013). Removal of Cd (II) ion from wastewater by adsorption onto treated old newspaper: kinetic modeling and isotherm studies, Int. J. Ind. Chem., 4, 13–19.
  • Ouaissa, Y. A., Chabani, M., Amrane, A., and Bensmaili, A. (2013). Removal of Cr (VI) from model solutions by a combined electrocoagulation sorption process, Chem. Eng. Technol., 36, 147–155.
  • Ozcan, A., Ozcan, A. S., and Gok, O. (2007). Adsorption kinetics and isotherms of anionic dye of reactive blue 19 from aqueous solutions onto DTMA-sepiolite. In Hazardous Materials and Wastewater—Treatment, Removal and Analysis, edited by A. A. Lewinsky Nova Science Publishers, New York.
  • Pagnanelli, F., Esposito, A., Toro, L., and Veglio, F. (2003). Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model, Water Res., 37, 627–633.
  • Palma, G., Freer, J., and Baeza, J. (2003). Removal of metal ions by modified Pinus radiata bark and tannins from water solutions, Water Res., 37, 4974–4980.
  • Perez-Marin, A. B., Meseguer Zapata, V., Ortuno, J. F., Aguilar, M., Saez, J., and Llorens, M. (2007). Removal of cadmium from aqueous solutions by adsorption onto orange waste, J. Hazard. Mater., 136, 122–131.
  • Rahman, M. A., Abuhasan, Md., Abdus Salam, Md., Salam, A., Siddique, N.-A., and Shafique Alam, A. M. (2012). Betelnut peel as an adsorbent in the removal of Cd, Cr, and Pb from aqueous solutions, Pak. J. Anal. Environ. Chem., 13, 137–147.
  • Rao, K. S., Anand, S., and Venkateswarlu, P. (2010). Adsorption of cadmium (II) ions from aqueous solution by Tectona grandis L. F. (Teak leaves powder), BioResources, 5, 438–454.
  • Redlich, O., and Peterson, D. L. A. (1998). Useful adsorption isotherm, J. Phys. Chem., 63, 1024–1029.
  • Saeed, A., and Iqbal, M. (2003). Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum), Water Res., 37, 3472–3480.
  • Saikaew, W., and Kaewsarn, P. (2011). Durian peel as biosorbent for removal of cadmium ions from aqueous solution, J. Environ. Res., 32, 17–30.
  • Saikaew, W., Kaewsarn, P., and Saikaew, W. (2009). Pomelo peel: agricultural waste for biosorption of cadmium ions from aqueous solutions, World Acad. Sci. Eng. Technol., 56, 287–291.
  • Sari, A., Cıtak, D., and Tuzen, M. (2010). Equilibrium, thermodynamic and kinetic studies on adsorption of Sb (III) from aqueous solution using low-cost natural diatomite, Chem. Eng. J., 162, 521–527.
  • Selatnia, A., Bakhti, M. Z., Madani, A., Kertous, L., and Mansouri, Y. (2004). Biosorption de Cd2+ from aqueous solution by a NAOH-treated bacterial dead streptomyces rimosus biomass, Hydrometallurgy, 75, 1–24.
  • Sips, R. (1948). On the structure of a catalyst surface, J. Chem Phys., 16, 490–495.
  • Štrkalj, A., and Malina, J. (2011). Thermodynamic and kinetic study of adsorption of Ni (ii) ions on carbon anode dust, Chem. Eng. Commun., 198, 1497–1504.
  • Subramanyam, B., and Ashutosh, D. (2012). Adsorption isotherm modeling of phenol onto natural soils – applicability of various isotherm models, Int. J. Environ. Res., 6, 265–271.
  • Temkin, M. J., and Pyzhev, V. (1940). Recent modifications to Langmuir isotherms, Acta Physicochim URSS, 12, 217–222.
  • Torab-Mostaedi, M., Asadollahzadeh, M., Hemmati, A., and Khosravi, A. (2013). Equilibrium, kinetic and thermodynamics studies for biosorption of cadmium and nickel on grapefruit peel, J. Taiwan Inst. Chem. Eng., 44, 295–302.
  • Toth, J. (1971). State equations of the solid gas interface layer, Acta Chem. Acad. Hung., 69, 311–317.
  • Treybal, R. E. (1988). Mass Transfer Operation, McGraw Hill, New York, USA.
  • Tsai, W. T., and Chen, H. R. (2010). Removal of Malachite Green from aqueous solution using low-cost chlorella-based biomass, J. Hazard. Mater., 175, 844–849.
  • Umapati, Pandey, R. N., Mishra, M. K., Sarita, and Singh, K. K. (2011). Sorption of lead and cadmium using fibres of Cocos nucifera, Asian J. Biochem. Pharm. Res., 2, 71–79.
  • Unuabonah, E. I., Adebowale, K. O., and Olu-Owolabi, B. I. (2007). Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay, J. Hazard. Mater., 144, 386–395.
  • Valdés, H., Sánchez-Polo, M., Rivera-Utrilla, J., and Zaror, C. A. (2002). Effect of ozone treatment on surface properties of activated carbon, Langmuir, 18, 2111–2116.
  • Varshney, R., Bhadauria, S., and Gaur, M. S. (2011). Biosorption of Copper (II) from electroplating wastewaters by Aspergillus terreus and its kinetics studies, Water, 2, 142–151.
  • Volesky, B. (2007). Review biosorption and me, Water Res., 41, 4017–4029.
  • Wahab, M. A., Jellali, S., and Jedidi, N. (2010). Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling, Bioresour. Technol., 101, 5070–5075.
  • Weber, W. J., and Morris, J. C. (1963). Kinetics of adsorption on carbon from solution, J. Sanitary Eng. Div. Am. Soc. Civ. Eng., 89, 31–60.
  • Wu, F. C., Tseng, R. L., and Juang, R. S. (2009). Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153, 1–8.
  • Xiaomin, L., Yanru, T., and Zhexian, X. (2007). Study on the preparation of Orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution, Sep. Purif. Technol., 55, 69–75.
  • Xun, Y., Shu-Ping, Z., Wei, Z., Hong-You, C., Xiao-Dong, D., Xin-Mei, L., and Zi-Feng, Y. (2007). Aqueous dye adsorption on ordered malodorous carbons, J. Colloid Interface Sci., 310, 83–89.
  • Yaneva, Z. L., Koumanova, B. K., and Georgieva, N. V. (2013). Linear and non-linear regression methods for equilibrium modelling of p-nitrophenol biosorption by Rhizopus oryzae: comparison of error analysis criteria, J. Chem., doi:10.1155/2013/517631
  • Yu, Q., and Kaewsarn, P. (2000). Cadmium removal from aqueous solutions by pre-treated biomass of marine macro-alga Padina sp., Environ. Pollut., 112, 1–5.
  • Yu, Y., Zhuang, Y. Y., Wang, Z. H., and Qiu, M. Q. (2004). Adsorption of water-soluble dyes modified resin, Chemosphere, 54, 425–430.
  • Zheng, L., Dang, Z., Yi, X., and Zhang, H. (2010). Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk, J. Hazard. Mater., 176, 650–656.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.