294
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Aggregated Nanoparticle Morphology Effects on Membrane Filtration

&

References

  • Am Ende, D. J. (2011). Chemical Engineering in the Pharmaceutical Industry R & D to Manufacturing, John Wiley & Sons, New York, http://public.eblib.com/EBLPublic/PublicView.do?ptiID=624518
  • Antelmi, D., Cabane, B., Meireles, M., and Aimar, P. (2001). Cake collapse in pressure filtration, Langmuir, 17, 7137–7144. doi:10.1021/la0104471
  • Bi, S.-S., Shi, L., and Zhang, L.-L. (2008). Application of nanoparticles in domestic refrigerators, Appl. Therm. Eng., 28, 1834–1843.
  • Bian, S.-W., Mudunkotuwa, I. A., Rupasinghe, T., and Grassian, V. H. (2011). Aggregation and dissolution of 4nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid, Langmuir, 27, 6059–6068. doi:10.1021/la200570n
  • Brown, G. R. (1975). Creeping flow of fluids through assemblages of elliptic cylinders and its application to the permeability of fiber mats. Institute of Paper Science and Technology, appleton
  • Bushell, G. C., Yan, Y. D., Woodfield, D., Raper, J., and Amal, R. (2002). On techniques for the measurement of the mass fractal dimension of aggregates, Adv. Colloid Interface Sci., 95, 1–50.
  • Carman, P. C. (1938). Fundamental principles of industrial filtration—A critical review of present knowledge, Trans. Inst. Chem. Eng., 16, 168–188.
  • Carpineti, M., Ferri, F., Giglio, M., Paganini, E., and Perini, U. (1990). Salt-induced fast aggregation of polystyrene latex, Phys. Rev. A, 42, 7347–7354.
  • Chellam, S., and Xu, W. (2006). Blocking laws analysis of dead-end constant flux microfiltration of compressible cakes, J. Colloid Interface Sci., 301, 248–257. doi:http://dx.doi.org/10.1016/j.jcis.2006.04.064
  • Chen, K. L., and Elimelech, M. (2006). Aggregation and deposition kinetics of fullerene (C60) nanoparticles, Langmuir, 22, 10994–11001. doi:10.1021/la062072v
  • Chen, K. L., Mylon, S. E., and Elimelech, M. (2006). Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes, Environ. Sci. Technol., 40, 1516–1523. doi:10.1021/es0518068
  • Chen, X., and Schluesener, H. J. (2008). Nanosilver: A nanoproduct in medical application, Toxicol. Lett., 176, 1–12.
  • Choo, K.-H., and Lee, C.-H. (1996). Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor, Water Res., 30, 1771–1780.
  • Davis, M. L. (2011). Water and Wastewater Engienering Design Principles and Practice, McGraw-Hill, New York.
  • Derjaguin, B., and Landau, L. (1941). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Acta Phys. Chem. URSS, 14, 633–662.
  • Dunphy Guzman, K. A., Finnegan, M. P., and Banfield, J. F. (2006). Influence of surface potential on aggregation and transport of titania nanoparticles, Environ. Sci. Technol., 40, 7688–7693. doi:10.1021/es060847g
  • Feng, X., and Johnson, D. (2013). Characterization of dispersed and aggregated Al2O3 morphologies for predicting nanofluid thermal conductivities, J. Nanopart. Res., 15, 1–11. doi:10.1007/s11051-013-1718-y
  • French, R. A., Jacobson, A. R., Kim, B., Isley, S. L., Penn, R. L., and Baveye, P. C. (2009). Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles, Environ. Sci. Technol., 43, 1354–1359. doi:10.1021/es802628n
  • Ganesh, R., Smeraldi, J., Hosseini, T., Khatib, L., Olson, B. H., Rosso, D. (2010). Evaluation of nanocopper removal and toxicity in municipal wastewaters, Environ. Sci. Technol., 44, 7808–7813. doi:10.1021/es101355k
  • Guan, J., Amal, R., and Waite, T. D. (2001). Effect of aggregate size and structure on specific resistance of biosolids filter cakes, Water Sci. Technol. J. Int. Assn Water Pollut. Res., 44, 215–220.
  • Hackley, V. A., and Anderson, M. A. (1989). Effects of short-range forces on the long-range structure of hydrous iron oxide aggregates, Langmuir, 5, 191–198. doi:10.1021/la00085a036
  • Hamachi, M., and Mietton-Peuchot, M. (1999). Experimental investigations of cake characteristics in crossflow microfiltration, Chem. Eng. Sci., 54, 4023–4030.
  • Happel, J. (1958). Viscous flow in multiparticle systems: Slow motion of fluids relative to beds of spherical particles, AIChE J., 4, 197–201. doi:10.1002/aic.690040214
  • Happel, J. (1959). Viscous flow relative to arrays of cylinders, AIChE J., 5, 174–177. doi:10.1002/aic.690050211
  • Henry, C., and Brant, J. A. (2012). Mechanistic analysis of microfiltration membrane fouling by buckminsterfullerene (C60) nanoparticles, J. Membr. Sci., 415–416, 546–557. doi:http://dx.doi.org/10.1016/j.memsci.2012.05.042
  • Hurd, A. J., and Schaefer, D. W. (1985). Diffusion-limited aggregation in two dimensions, Phys. Rev. Lett., 54, 1043–1046.
  • Jiang, W., Mashayekhi, H., and Xing, B. (2009). Bacterial toxicity comparison between nano- and micro-scaled oxide particles, Environ. Pollut., 157, 1619–1625.
  • Johnson, P. N., and Amirtharajah, A. (1983). Ferric chloride and alum as single and dual coagulants, J. Am. Water Works Assn., 75, 232–239.
  • Kiser, M. A., Ryu, H., Jang, H., Hristovski, K., and Westerhoff, P. (2010). Biosorption of nanoparticles to heterotrophic wastewater biomass, Water Res., 44, 4105–4114.
  • Kiser, M. A., Westerhoff, P., Benn, T., Wang, Y., Pérez-Rivera, J., and Hristovski, K. (2009). Titanium nanomaterial removal and release from wastewater treatment plants, Environ. Sci. Technol., 43, 6757–6763. doi:10.1021/es901102n
  • Kobayashi, M., Juillerat, F. dr, Galletto, P., Bowen, P., and Borkovec, M. (2005). Aggregation and charging of colloidal silica particles: effect of particle size, Langmuir, 21, 5761–5769. doi:10.1021/la046829z
  • Koroleva, L. (2009). Abrasive properties of aluminum iron oxide nanoparticles, Inorg. Mater., 45, 1158–1165. doi:10.1134/s0020168509100148
  • Kuwabara, S. (1959). The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small reynolds numbers, J. Phys. Soc. Jpn, 14, 527–532.
  • Lee, J.-D., Lee, S.-H., Jo, M.-H., Park, P.-K., Lee, C.-H., and Kwak, J.-W. (2000). Effect of coagulation conditions on membrane filtration characteristics in coagulationâ'microfiltration process for water treatment, Environ. Sci. Technol., 34, 3780–3788. doi:10.1021/es9907461
  • Lee, S. A., Fane, A. G., and Waite, T. D. (2005). Impact of natural organic matter on floc size and structure effects in membrane filtration, Environ. Sci. Technol., 39, 6477–6486. doi:10.1021/es050148o
  • Leiknes, T. (2009). The effect of coupling coagulation and flocculation with membrane filtration in water treatment: A review, J. Environ. Sci., 21, 8–12.
  • Li, K., Zhang, W., Huang, Y., and Chen, Y. (2011). Aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling, J. Nanopart. Res., 13, 6483–6491. doi:10.1007/s11051-011-0548-z
  • Li, X.-Y., and Logan, B. E. (2001). Permeability of fractal aggregates, Water Res., 35, 3373–3380.
  • Limbach, L. K., Bereiter, R., Müller, E., Krebs, R., Gälli, R., and Stark, W. J. (2008). Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency, Environ. Sci. Technol., 42, 5828–5833. doi:10.1021/es800091f
  • Lin, M. Y., Lindsay, H. M., Weitz, D. A., Ball, R. C., Klein, R. C. B., and Meakin, P. (1990a). Universal diffusion-limited colloid aggregation, J. Phys. Condens. Matter, 2, 5283.
  • Lin, M. Y., Lindsay, H. M., Weitz, D. A., Ball, R. C., Klein, R., and Meakin, P. (1990b). Universal reaction-limited colloid aggregation, Phys. Rev. A, 41, 2005.
  • Lorenz, C., Von Goetz, N., Scheringer, M., Wormuth, M., and Hungerbühler, K. (2011). Potential exposure of German consumers to engineered nanoparticles in cosmetics and personal care products, Nanotoxicology, 5, 12–29. doi: 10.3109/17435390.2010.484554
  • Mendret, J., Guigui, C., Schmitz, P., and Cabassud, C. (2009). In situ dynamic characterisation of fouling under different pressure conditions during dead-end filtration: Compressibility properties of particle cakes, J. Membr. Sci., 333, 20–29. doi:http://dx.doi.org/10.1016/j.memsci.2009.01.035
  • Moshfegh, A. Z. (2009). Nanoparticle catalysts Journal of Physics D: Applied Physics 42 (23)
  • Mu, H., Chen, Y., and Xiao, N. (2011). Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion, Bioresour. Technol., 102, 10305–10311.
  • Park, P.-K., Lee, C.-H., and Lee, S. (2006). Permeability of collapsed cakes formed by deposition of fractal aggregates upon membrane filtration, Environ. Sci. Technol., 40, 2699–2705. doi:10.1021/es0515304
  • Psoch, C., and Schiewer, S. (2006). Resistance analysis for enhanced wastewater membrane filtration, J. Membr. Sci., 280, 284–297.
  • Shipley, H., Engates, K., and Guettner, A. (2011). Study of iron oxide nanoparticles in soil for remediation of arsenic, J. Nanopart. Res., 13, 2387–2397. doi:10.1007/s11051-010-9999-x
  • Sørensen, B. L., and Sorensen, P. B. (1997). Applying cake filtration theory on membrane filtration data, Water Res., 31, 665–670.
  • Stoller, M., and Chianese, A. (2007). Influence of the adopted pretreatment process on the critical flux value of batch membrane processes, Ind. Eng. Chem. Res., 46, 2249–2253. doi:10.1021/ie060964k
  • Van Der Bruggen, B., Vandecasteele, C., Van Gestel, T., Doyen, W., and Leysen, R. (2003). A review of pressure-driven membrane processes in wastewater treatment and drinking water production, Environ. Prog., 22, 46–56. doi:10.1002/ep.670220116
  • Veerapaneni, S., and Wiesner, M. R. (1996). Hydrodynamics of fractal aggregates with radially varying permeability, J. Colloid Interface Sci., 177, 45–57.
  • Verwey, E. J. W., and Overbeek, J. T. G. (1948). Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam.
  • Waite, T. D., Schäfer, A. I., Fane, A. G., and Heuer, A. (1999). Colloidal fouling of ultrafiltration membranes: impact of aggregate structure and size, J. Colloid Interface Sci., 212, 264–274.
  • Xu, W., Chellam, S., and Clifford, D. A. (2004). Indirect evidence for deposit rearrangement during dead-end microfiltration of iron coagulated suspensions, J. Membr. Sci., 239, 243–254.
  • Zhang, J., and Buffle, J. (1996). Multi-method determination of the fractal dimension of hematite aggregates, Colloids Surf. A, 107, 175–187.
  • Zhang, J., Wang, L., Zhang, G., Wang, Z., Xu, L., and Fan, Z. (2013). Influence of azo dye-TiO2 interactions on the filtration performance in a hybrid photocatalysis/ultrafiltration process, J. Colloid Interface Sci., 389, 273–283. doi:http://dx.doi.org/10.1016/j.jcis.2012.08.062
  • Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K., and Crittenden, J. C. (2008). Stability of commercial metal oxide nanoparticles in water, Water Res., 42, 2204–2212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.