456
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Medium Optimization for Enhanced Production of Protease with Industrially Desirable Attributes from Bacillus subtilis K-1

&

References

  • Asif, M., Hussain, A., Ali, M. A., and Rasool, M. (2012). Scale up studies for the production of protease enzyme using Bacillus subtilis adopting response surface methodology, African J. Microbiol. Res., 6, 2120–2128.
  • Bajaj, B. K., and Manhas, K. (2012). Production and characterization of xylanase from Bacillus licheniformis P11(C) with potential for fruit juice and bakery industry, Biocatal. Agric. Biotechnol., 1, 330–337.
  • Bajaj, B. K., and Sharma, P. (2011). An alkali-thermotolerant extracellular protease from a newly isolated Streptomyces sp. DP2, New Biotechnol., 28, 725–732.
  • Bajaj, B. K., and Singh, N. P. (2010). Production of xylanase from an alkalitolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization, Appl. Biochem. Biotechnol., 162, 1804–1818.
  • Bajaj, B. K., and Wani, M. A. (2011). Enhanced phytase production from Nocardia sp. MB 36 using agro-residues as substrates: Potential application for animal feed production, Eng. Life Sci., 11, 620–628.
  • Bajaj, B. K., Khajuria, Y. P., and Singh, V. P. (2012). Agricultural residues as potential substrates for production of xylanase from alkali-thermotolerant bacterial isolate, Biocatal. Agric. Biotechnol., 1, 314–320.
  • Bajaj, B. K., Sharma, N., and Singh, S. (2013). Enhanced production of fibrinolytic protease from Bacillus cereus NS-2 using cotton seed cake as nitrogen source, Biocatal. Agric. Biotechnol., 2, 204–209.
  • David, L., Vierros, M., Hamon, G., Arico, S., and Monagie, C. (2009). Marine genetic resources: a review of scientific and commercial interest, Mar. Policy, 33, 183–194.
  • Dijl, J. M., and Hecker, M. (2013). Bacillus subtilis: from soil bacterium to super-secreting cell factory, Microb. Cell Fact., 12, 1–6.
  • Divakar, G., Sunitha, M., Vasu, P., Udaya Shanker, P., and Ellaiah, P. (2006). Optimization of process parameters for alkaline protease production under solid-state fermentation by Thermoactinomyces thalpophilus PEE 14, Indian J. Biotechnol., 5, 80–83.
  • Haddar, A., Fakhfakh-Zouari, N., Hmidet, N., Frikha, F., Nasri, M., and Kamoun, A. S. (2010). Low-cost fermentation medium for alkaline protease production by Bacillus mojavensis A21 using hulled grain of wheat and sardinella peptone, J. Biosci. Bioeng., 110, 288–294.
  • Harde, S. M., Bajaj, I. B., and Singhal, R. S. (2011). Optimization of fermentative production of keratinase from Bacillus subtilis NCIM 2724, Agric. Food Anal. Bacteriol., 1, 54–65.
  • Hindhumathi, M., Vijayalakshmi, S., and Thankamani, V. (2011). Optimization and cultural characterization of alkalophilic protease producing Bacillus sp. GPA4, Res. Biotechnol., 2, 13–19.
  • Jaouadi, B., Ellouz-Chaabouni, S., Rhimi, M., and Bejar, S. (2008). Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency, Biochimie, 90, 1291–1305.
  • Jayasree, D., Sandhya Kumari, T. D., Kavi Kishor, P. B., Vijaya Lakshmi, M., and Lakshmi Narasu, M. (2009). Optimization of production protocol of alkaline protease by Streptomyces pulvereceus, InterJRI Sci. Technol., 1, 79–82.
  • Joo, H. S., and Chang, C. S. (2005). Oxidant and SDS stable alkaline protease from a halotolerant Bacillus clausii I-52: enhanced production and simple purification, J. Appl. Microbiol., 98, 491–497.
  • Kembhavi, A. A., Kulkarni, A., and Pant, A. (1993). Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64, Appl. Biochem. Biotechnol., 38, 83–92.
  • Kumar, C. G., and Takagi, H. (1999). Microbial alkaline protease; from a bio-industrial view point, Biotechnol. Adv., 17, 561–594.
  • Meena, P., Tripathi, A. D., Srivastava, S. K., and Jha A. (2013). Utilization of agro-industrial waste (wheat bran) for alkaline protease production by Pseudomonas aeruginosa in SSF using Taguchi (DOE) methodology, Biocatal. Agric. Biotechnol., 2, 210–216.
  • Mukherjee, A. K., and Rai, S. K. (2011). A statistical approach for the enhanced production of alkaline protease showing fibrinolytic activity from a newly isolated Gram-negative Bacillus sp. strain AS-S20-I, New Biotechnol., 28, 182–189.
  • Nilegaonkar, S. S., Zambare, V. P., Kanekar, P. P., Dhakephalkar, P. K., and Sarnaik, S. S. (2007). Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326, Bioresour. Technol., 98, 1238–1245.
  • Nizamudeen, S., and Bajaj, B. K. (2009). A novel thermo-alkalitolerant endoglucanase production using cost-effective agricultural residues as substrates by a newly isolated Bacillus sp. NZ, Food Technol. Biotechnol., 47, 435–440.
  • Parimala, T., Sneha, P. M., Ramachandra, C. S. V., and Babu, R. S. (2012). Response surface optimization of process variables for alkaline protease production by Bacillus subtilis, J. Chem. Bio. Phy. Sci., 2, 228–236.
  • Pillai, P., Mandge, S., and Archana, G. (2011). Statistical optimization of production and tannery applications of a keratinolytic serine protease from Bacillus subtilis P13, Process Biochem., 46, 1110–1117.
  • Prakasham, R. S., Subba Rao, C., Sreenivas Rao, R., Rajesham, S., and Sarma, P. N. (2005). Optimization of alkaline protease production by Bacillus sp. using Taguchi methodology, Appl. Biochem. Biotechnol., 120, 133–144.
  • Rajput, R., and Gupta, R. (2013). Thermostable keratinase from Bacillus pumilus KS12: Production, chitin crosslinking and degradation of Sup35NM aggregates, Bioresour. Technol., 133, 118–126.
  • Reddy, L. V. A., Wee, Y., Yun, J., and Ryu, H. (2008). Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett–Burman and response surface methodological approaches, Bioresour. Technol., 99, 2242–2249.
  • Romsomsa, N., Chim-anagae, P., and Jangchud, A. (2010). Optimization of silk degumming protease production from Bacillus subtilis C4 using Plackett-Burman design and response surface methodology, Sci. Asia, 36, 118–124.
  • Saxena, R., and Singh, R. (2010). Statistical optimization of conditions for protease production from Bacillus sp., Acta Biologica Szegediensis, 54, 135–141.
  • Schallmey, M., Singh, A., and Ward, O. P. (2004). Developments in the use of Bacillus species for industrial production, Can. J. Microbiol., 50, 1–17.
  • Shaheen, M., Ali Shah, A., Hameed, A., and Hasan, F. (2008). Influence of culture conditions on production and activity of protease from Bacillus subtilis BS1, Pak. J. Bot., 40, 2161–2169.
  • Shrinivas, D., and Naik, G. R. (2011). Characterization of alkaline thermostable keratinolytic protease from thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity, Int. Biodeter. Biodegr., 65, 29–35.
  • Srividya, S., and Mala, M. (2011). Influence of process parameters on the production of detergent compatible alkaline protease by a newly isolated Bacillus sp. Y, Turk. J. Biol., 35, 177–182.
  • Subba Rao, C., Sathish, T., Ravichandra, P., and Prakasham, R. S. (2009). Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications, Process Biochem., 44, 262–268.
  • Suganthi, C., Mageswari, A., Karthikeyan, S., Anbalagan, M., Sivakumar, A., and Gothandam, K. M. (2013). Screening and optimization of protease production from a halotolerant Bacillus licheniformis isolated from saltern sediments, J. Genet. Eng. Biotechnol., 11, 45–72.
  • Vadlamani, S., and Parcha, S. R. (2012). Optimization of alkaline protease production from locally isolated Bacillus sp. Bacillus firmus from soil microorganisms in batch culture using statistical design, Int. J. Eng. Res. Appl., 2, 917–924.
  • Vishwanatha, K. S., Rao, A. G. A., and Singh, S. A. (2010). Acid protease production by solid state fermentation using Aspergillus oryzae MTCC 5341: optimization of process parameters, J. Ind. Microbiol. Biotechnol., 37, 129–138.
  • Xiao, Z. J., Liu, P. H., Qin, J. Y., and Xu, P. (2007). Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolyzate, Appl. Microbiol. Biotechnol., 74, 61–68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.