208
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Inclination Angle on Laminar Mixed Convection of a Nanofluid Flowing through an Annulus

, &

References

  • Alinia, M., Ganji, D. D., and Gorji-Bandpy, M. (2011). Numerical study of mixed convection in an inclined two sided lid driven cavity filled with nanofluid using two-phase mixture model, Int. Commun. Heat Mass Transfer, 38, 1428–1435.
  • Ben Mansour, R., Galanis, N., and Nguyen, C. T. (2011). Experimental study of mixed convection with water/Al2O3 in inclined tube with uniform wall heat flux, Int. J. Therm. Sci., 50(3), 403–410.
  • Chen, H., Yang, W., He, Y., Ding, Y., Zhang, L., Tan, C., Lapkin, A. A., and Bavykin, D. V. (2008). Heat transfer behaviour of aqueous suspensions of titanate nanofluids, Powder Technol., 183, 63–72.
  • Choi, S. U. S. (1995). Enhancing thermal conductivity of fluids with nanoparticles, FED, 231, 99–103.
  • Chon, C. H., Kihm, K. D., Lee, S. P., and Choi, S. U. S. (2005). Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett., 87, 1–3.
  • Corcione, M. (2011). Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Convers. Manage., 52(1), 789–793.
  • Das, S. K., Putra, N., and Roetzel, W. (2003a). Pool boiling characteristics of nano-fluids, Int. J. Heat Mass Transfer, 46, 851–862.
  • Das, S. K., Putra, N., and Roetzel, W. (2003b). Pool boiling of nano-fluids on horizontal narrow tubes, Int. J. Multiphase Flow, 29, 1237–1247.
  • Das, S. K., Putra, N., Thiesen, P., and Roetzel, W. (2003c). Temperature dependence of thermal conductivity enhancement of nanofluids, Trans. ASME J. Heat Transfer, 125, 567–574.
  • Ding, Y., Alias, H., Wen, D., and Williams, R. A. (2006). Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer, 49, 240–250.
  • Duangthongsuk, W., and Wongwises, S. (2009). Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Exp. Therm. Fluid Sci., 33, 706–714.
  • Gunnasegaran, P., Mohammed, H. A., and Shuaib, N. H. (2010). Heat transfer in rectangular microchannels heat sink using nanofluids, Int. Commun. Heat Mass Transfer, 37(10), 1496–1503.
  • Izadi, M., Behzadmehr, A., and Jalali-Vahid, D. (2009). Numerical study of developing laminar forced convection of a nanofluid in an annulus, Int. J. Therm. Sci., 48, 2119–2129.
  • Izadi, M., Behzadmehr, A., and Shahmardan, M. M. (2013a). Effects of discrete source-sink arrangements on mixed convection in a square cavity filled by nanofluid, Korean J. Chem. Eng., 31(1), 12–19.
  • Izadi, M., Shahmardan, M. M., Maghrebi, M. J., and Behzadmehr, A. (2013b). Numerical study of developed laminar mixed convection of Al2O3/water nanofluid in an annulus, Chem. Eng. Commun., 200(7), 878–894.
  • Kalteh, M., Abbassi, A., Saffar-Avval, M., Frijns, A., Darhuber, A., and Harting, J. (2012). Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink, Appl. Therm. Eng., 36, 260–268.
  • Kays, W., Crawford, M., and Weigand, B. (2004). Convective Heat and Mass Transfer, New York: McGraw-Hill.
  • Khanafar, K., Vafai, K., and Lightstone, M. (2003). Buoyancy-driven heat transfer enhancement in a two-dimensional Enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 46, 3639–3653.
  • Li, C. H., and Peterson, G. P. (2006). Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), J. Appl. Phys., 99, 084314.
  • Lu, G., and Wang, J. (2008). Experimental investigation on heat transfer characteristics of water flow in a narrow annulus, Appl. Therm. Eng., 28, 8–13.
  • Ma, H. B., Wilson, C., Borgmeyer, B., Park, K., and Yu, Q. (2006). Effect of nanofluid on the heat transport capability in an oscillatory heat pipe, Appl. Phys. Lett., 88, 143116.
  • Masoumi, N., Sohrabi, N., and Behzadmehr, A. (2009). A new model for calculating the effective viscosity of nanofluids, J. Phys. D Appl. Phys., 42, 055501.
  • Maxwell, J. C. (1873). Electricity and Magnetism, Clarendon Press, Oxford.
  • Maxwell, J. C. (1904). A Treatise on Electricity and Magnetism, 2nd ed., Oxford University Press, Cambridge, pp. 435–441.
  • Mirmasoumi, S., and Behzadmehr, A. (2008). Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model, Appl. Therm. Eng., 28, 717–727.
  • Murshed, S. M. S., Leong, K. C., and Yang, C. (2008). Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci., 47, 560–568.
  • Phuoc, T. X., Massoudi, M., and Chen, R. H. (2011). Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan, Int. J. Therm. Sci., 50, 12–18.
  • Santra, A. K., Sen, S., and Chakraborty, N. (2009). Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates, Int. J. Therm. Sci., 48, 391–400.
  • Wen, D., and Ding, Y. (2004a). Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids), J. Thermophys. Heat Transfer, 18, 481–485.
  • Wen, D., and Ding, Y. (2004b). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Transfer, 47, 5181–5188.
  • Yu, W., and Choi, S. U. S. (2003). The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model, J. Nanoparticle Res., 5, 167–171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.