274
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Kinetic Modeling and Enhanced Production of Fructose and Ethanol From Date Fruit Extract

, , , , , & show all

References

  • Abbott, D. A., Suir, E., van Maris, A. J. A., and Pronk, J. T. (2008). Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae, Appl. Environ. Microbiol., 74, 5759–5768.
  • Atiyeh, H. (2003). Study of the Production of Fructose and Ethanol from Sucrose and Molasses Media Using Saccharomycess cerevisiae ATCC 36858, University of Ottawa, Ottawa.
  • Atiyeh, H., and Duvnjak, Z. (2001). Production of fructose and ethanol from media with high sucrose concentrations by a mutant of Saccharomyces cerevisiae, J. Chem. Technol. Biotechnol., 76, 1017–1022.
  • Brzonkalik, K., Hümmer, D., Syldatk, C., and Neumann, A. (2012). Influence of pH and carbon to nitrogen ratio on mycotoxin production by Alternaria alternata in submerged cultivation, AMB Express, 2, 1–8.
  • Carvalho, R. S., Gomes, L. H., Filho, L. G. P., and Tavares, F. C. A. (2008). Obtaining and selection of hexokinases-less strains of Saccharomyces cerevisiae for production of ethanol and fructose from sucrose, Appl. Microbiol. Biotechnol., 77, 1131–1137.
  • Di Luccio, M., Borges, C. P., and Alves, T. L. M. (2002). Economic analysis of ethanol and fructose production by selective fermentation coupled to pervaporation: Effect of membrane costs on process economics, Desalination, 147, 161–166.
  • Dombek, K. M., and Ingram, L. O. (1986). Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation, Appl. Environ. Microbiol., 52, 975–981.
  • El-Refai, A. H., El-Abyad, M. S., El-Diwany, A. I., Sallam, L. A., and Allam, R. F. (1992). Some physiological parameters for ethanol production from beet molasses by Saccharomyces cerevisiae Y-7, Bioresour. Technol., 42, 183–189.
  • Farias, D., de Andrade, R., and Maugeri-Filho, F. (2014). Kinetic modeling of ethanol production by Scheffersomyces stipitis from xylose, Appl. Biochem. Biotechnol., 172, 361–379.
  • Gaily, M. H. M. (2010). Simultaneous Production of Fructose and Bio-Ethanol Through Bioconversion of Date Sugars, University of Khartoum, Khartoum.
  • Gikas, P. (2008). Single and combined effects of nickel (Ni(II)) and cobalt (Co(II)) ions on activated sludge and on other aerobic microorganisms: A review, J. Hazard. Mater., 159, 187–203.
  • Gorsek, A., and Zajsek, K. (2010). Influence of temperature variations on ethanol production by Kefir grains—Mathematical model development, Chem. Eng. Trans., 20, 181–186.
  • Goyal, N., Jain, S. C., and Banerjee, U. C. (2003). Comparative studies on the microbial adsorption of heavy metals, Adv. Environ. Res., 7, 311–319.
  • Jain, S. M. (2012). In vitro mutagenesis for improving date palm (Phoenix dactylifera L.), Emir. J. Food Agric., 24, 400–407.
  • Jargalsaikhan, O., and Saraçoğlu, N. (2008). Applicationof experimental design method for ethanol production by fermentation of sunflower seed hull hydrolysate using Pichia stripitis NRRL-124, Chem. Eng. Commun., 196, 93–103.
  • Jones, R. P., and Greenfield, P. F. (1984). A review of yeast ionic nutrition. I. Growth and fermentation requirements, Process Biochem., 19, 48–60.
  • Jones, R. P., Pamment, N., and Greenfield, P. F. (1981). Alcohol fermentation by yeasts—The effect of environmental and other variables, Process Biochem., 16, 42–49.
  • Kalil, M. S., Alshiyab, H. S., and Yusoff, W. M. W. (2008). Effect of nitrogen source and carbon to nitrogen ratio on hydrogen production using C. acetobutylicum, Am. J. Biochem. Biotechnol., 4, 393–401.
  • Kapich, A. N., Prior, B. A., Botha, A., Galkin, S., Lundell, T., and Hatakka, A. (2004). Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446, Enzyme Microb. Technol., 34, 187–195.
  • Kaškonienė, V., Venskutonis, P. R., and Čeksterytė, V. (2010). Carbohydrate composition and electrical conductivity of different origin honeys from Lithuania, LWT Food Sci. Technol., 43, 801–807.
  • Khosravanipour Mostafazadeh, A., Sarshar, M., Javadian, S., Zarefard, M. R., and Amirifard Haghighi, Z. (2011). Separation of fructose and glucose from date syrup using resin chromatographic method: Experimental data and mathematical modeling, Sep. Purif. Technol., 79, 72–78.
  • Koren, D. W., and Duvnjak, Z. (1991). Continuous production of fructose syrup and ethanol from hydrolysed Jerusalem artichoke juice, J. Ind. Microbiol., 7, 131–135.
  • Kuhad, R. C., Mehta, G., Gupta, R., and Sharma, K. K. (2010). Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae, Biomass Bioenergy, 34, 1189–1194.
  • Labeckas, G., and Slavinskas, S. (2009). Comparative performance of direct injection diesel engine operating on ethanol, petrol and rapeseed oil blends, Energy Convers. Manage., 50, 792–801.
  • Lobo, Z., and Maitra, P. K. (1977). Genetics of yeast hexokinase, Genetics, 86, 727–744.
  • López, S., Prieto, M., Dijkstra, J., Dhanoa, M. S., and France, J. (2004). Statistical evaluation of mathematical models for microbial growth, Int. J. Food Microbiol., 96, 289–300.
  • Moshaf, S., Hamidi-Esfahani, Z., and Azizi, M. H. (2011). Optimization of conditions for xanthan gum production from waste date in submerged fermantation, World Acad. Sci. Eng. Technol., 57, 521–524.
  • Mu, Y., Wang, G., and Yu, H. Q. (2006). Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures, Bioresour. Technol., 97, 1302–1307.
  • Nevoigt, E., and Stahl, U. (1997). Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae, FEMS Microbiol. Rev., 21, 231–241.
  • Oura, E. (1977). Reaction products of yeast fermentations, Process Biochem., 12, 19–21.
  • Putra, M. D., Abasaeed, A. E., Al-Zahrani, S. M., Gaily, M. H., Sulieman, A. K., Zeinelabdeen, M. A., and Atiyeh, H. K. (2013). Production of fructose from highly concentrated date extracts using Saccharomyces cerevisiae, Biotechnol. Lett., 36, 531–536.
  • Radler, F., and Schütz, H. (1982). Glycerol production of various strains of Saccharomyces, Am. J. Enol. Vitic., 33, 36–40.
  • Rass-Hansen, J., Falsig, H., Jørgensen, B., and Christensen, C. H. (2007). Bioethanol: Fuel or feedstock?, J. Chem. Technol. Biotechnol., 82, 329–333.
  • Rodrigues, R. L. B., Kenealy, W., and Jeffries, T. (2011). Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30, J. Ind. Microbiol. Biotechnol., 38, 1649–1655.
  • Sánchez-Zapata, E., Fernández-López, J., Peñaranda, M., Fuentes-Zaragoza, E., Sendra, E., Sayas, E., and Pérez-Alvarez, J. A. (2011). Technological properties of date paste obtained from date by-products and its effect on the quality of a cooked meat product, Food Res. Int., 44, 2401–2407.
  • Sarris, D., Giannakis, M., Philippoussis, A., Komaitis, M., Koutinas, A. A., and Papanikolaou, S. (2013). Conversions of olive mill wastewater-based media by Saccharomyces cerevisiae through sterile and non-sterile bioprocesses, J. Chem. Technol. Biotechnol., 88, 958–969.
  • Sarris, D., Matsakas, L., Aggelis, G., Koutinas, A. A., and Papanikolaou, S. (2014). Aerated vs non-aerated conversions of molasses and olive mill wastewaters blends into bioethanol by Saccharomyces cerevisiae under non-aseptic conditions, Ind. Crops Prod., 56, 83–93.
  • Shakoury-Elizeh, M., Protchenko, O., Berger, A., Cox, J., Gable, K., Dunn, T. M., Prinz, W. A., Bard, M., and Philpott, C. C. (2010). Metabolic response to iron deficiency in Saccharomyces cerevisiae, J. Biol. Chem., 285, 14823–14833.
  • Somda, M. K., Savadogo, A., Barro, N., Thonart, P., and Traore, A. S. (2011). Effect of minerals salts in fermentation process using mango residues as carbon source for bioethanol production, Asian J. Ind. Eng., 3, 29–38.
  • Stewart, G. G., and Russell, I. (1987). Biochemical and genetic control of sugar and carbohydrate metabolism in yeasts, in Yeast Biotechnology, D. R. Berry I. Russell G. G. Stewart eds., Allen & Unwin, London, 277–310.
  • Terrab, A., Díez, M. J., and Heredia, F. J. (2003). Palynological, physico-chemical and colour characterization of Moroccan honeys. II. Orange (Citrus sp.) honey, Int. J. Food Sci. Technol., 38, 387–394.
  • Thomas, D. S., and Rose, A. H. (1979). Inhibitory effect of ethanol on growth and solute accumulation by Saccharomyces cerevisiae as affected by plasma-membrane lipid composition, Arch. Microbiol., 122, 49–55.
  • USA, Department of Agriculture. (2011). National Agriculture Statistics Services (NSAS). http://quickstats.nass.usda.gov/results/2833B47F-6986-3BA9-BAD3-365AA40F31B3?pivot=short_desc.
  • Vriesekoop, F., Krahl, M., Hucker, B., and Menz, G. (2012). 125th anniversary review: Bacteria in brewing: The good, the bad and the ugly, J. Inst. Brew., 118, 335–345.
  • Walker, G. M. (2004). Metals in yeast fermentation processes, Adv. Appl. Microbiol., 54, 197–229.
  • Wu, X., Gao, H., and Lin, B. (2010). Study of the enzymatic isomerization of glucose during reverse-phase liquid chromatography, Chem. Eng. Commun., 197, 1187–1194.
  • Youssef, F., Roukas, T., and Biliaderis, C. G. (1999). Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture, Process Biochem., 34, 355–366.
  • Zajsek, K., and Gorsek, A. (2010). Modelling of batch kefir fermentation kinetics for ethanol production by mixed natural microflora, Food Bioprod. Process., 88, 55–60.
  • Zwietering, M. H., Jongenburger, I., Rombouts, F. M., and van't Riet, K. (1990). Modeling of the bacterial growth curve, Appl. Environ. Microbiol., 56, 1875–1881.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.