293
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Size and Dispersion Control of Pt Nanoparticles Grown Upon Graphite-Derived Nanosheets

, , , , , & show all

References

  • Armes, S. P. (1987). Optimum reaction conditions for the polymerization of pyrrole by iron(Iii) chloride in aqueous-solution, Synth. Met., 20, 365–371.
  • Berger, S. D., Mckenzie, D. R., and Martin, P. J. (1988). Eels analysis of vacuum arc-deposited diamond-like films, Philos. Mag. Lett., 57, 285–290.
  • Braun, A., Huggins, F. E., Shah, N., Chen, Y., Wirick, S., Mun, S. B., Jacobsen, C., and Huffman, G. P. (2005). Advantages of soft X-ray absorption over TEM-EELS for solid carbon studies—A comparative study on diesel soot with EELS and NEXAFS, Carbon, 43, 117–124.
  • Chen, X. B., Li, C., Gratzel, M., Kostecki, R., and Mao, S. S. (2012). Nanomaterials for renewable energy production and storage, Chem. Soc. Rev., 41, 7909–7937.
  • Chu, P. K., and Li, L. H. (2006). Characterization of amorphous and nanocrystalline carbon films, Mater. Chem. Phys., 96, 253–277.
  • Coloma, F., Sepulvedaescribano, A., Fierro, J. L. G., and Rodriguezreinoso, F. (1997). Gas phase hydrogenation of crotonaldehyde over Pt/activated carbon catalysts. Influence of the oxygen surface groups on the support, Appl. Catal. A Gen., 150, 165–183.
  • Duarte-Moller, A., Espinosa-Magana, F., Martinez-Sanchez, R., Avalos-Borja, M., Hirata, G. A., and Cota-Araiza, L. (1999). Study of different forms of carbon by analytical electron microscopy, J. Electron. Spectrosc., 104, 61–66.
  • Eda, G., and Chhowalla, M. (2009). Graphene-based composite thin films for electronics, Nano Lett., 9, 814–818.
  • El Achaby, M., and Qaiss, A. (2013). Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes, Mater. Des., 44, 81–89.
  • Fang, M., Wang, K. G., Lu, H. B., Yang, Y. L., and Nutt, S. (2009). Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites, J. Mater. Chem., 19, 7098–7105.
  • Fang, Z., Ito, A., Stuartt, A. C., Luo, H. L., Chen, Z. F., Vinodgopal, K., You, W., Meyer, T. J., and Taylor, D. K. (2013). Soluble reduced graphene oxide sheets grafted with polypyridylruthenium-derivatized polystyrene brushes as light harvesting antenna for photovoltaic applications, ACS Nano, 7, 7992–8002.
  • Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., et al. (2006). Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97, 187401.
  • Gonzalez-Berrios, A., Weiner, B. R., and Morell, G. (2007). Effects of adsorbates on field emission reproducibility of sulfur-incorporated nanocomposite carbon films, J. Vac. Sci. Technol. B, 25, 318–323.
  • Gubler, L., Beck, N., Gursel, S. A., Hajbolouri, F., Kramer, D., Reiner, A., Steiger, B., et al. (2004). Materials for polymer electrolyte fuel cells, Chimia, 58, 826–836.
  • Hao, X., Quach, L., Korah, J., Spieker, W. A., and Regalbuto, J. R. (2004). The control of platinum impregnation by PZC alteration of oxides and carbon, J. Mol. Catal. A Chem., 219, 97–107.
  • He, Y. Q., Zhang, N. N., Gong, Q. J., Qiu, H. X., Wang, W., Liu, Y., and Gao, J. P. (2012). Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning, Carbohydr. Polym., 88, 1100–1108.
  • Jia, Y. F., and Demopoulos, G. P. (2003). Adsorption of silver onto activated carbon from acidic media: Nitrate and sulfate media, Ind. Eng. Chem. Res., 42, 72–79.
  • Kim, K. I., and Hong, T. W. (2012). Hydrogen permeation of TiN-graphene membrane by hot press sintering (HPS) process, Solid State Ionics, 225, 699–702.
  • Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., and Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706–710.
  • Kou, R., Shao, Y. Y., Wang, D. H., Engelhard, M. H., Kwak, J. H., Wang, J., Viswanathan, V. V., et al. (2009). Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction, Electrochem. Commun., 11, 954–957.
  • Lee, H. Y., Kim, J. Y., Park, J. H., Joe, Y. G., and Lee, T. H. (2004). Performance of polypyrrole-impregnated composite electrode for unitized regenerative fuel cell, J. Power Sources, 131, 188–193.
  • Li, G. L., Liu, G., Li, M., Wan, D., Neoh, K. G., and Kang, E. T. (2010). Organo- and water-dispersible graphene oxide-polymer nanosheets for organic electronic memory and gold nanocomposites, J. Phys. Chem. C, 114, 12742–12748.
  • Liu, R., Her, W. H., and Fedkiw, P. S. (1992). Insitu electrode formation on a nafion membrane by chemical platinization, J. Electrochem. Soc., 139, 15–23.
  • Liu, Y., Zhang, Y., Ma, G. H., Wang, Z., Liu, K. Y., and Liu, H. T. (2013). Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor, Electrochim. Acta, 88, 519–525.
  • Liu, Y., Zhu, L. H., Zhang, Y. Y., and Tang, H. Q. (2012). Electrochemical sensoring of 2,4-dinitrophenol by using composites of graphene oxide with surface molecular imprinted polymer, Sens. Actuators B Chem., 171, 1151–1158.
  • Matsumoto, T., Komatsu, T., Nakano, H., Arai, K., Nagashima, Y., Yoo, E., Yamazaki, T., et al. (2004). Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells, Catal. Today, 90, 277–281.
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A. (2004). Electric field effect in atomically thin carbon films, Science, 306, 666–669.
  • Okan, B. S., Yurum, A., Gorgulu, N., Gursel, S. A., and Yurum, Y. (2011). Polypyrrole coated thermally exfoliated graphite nanoplatelets and the effect of oxygen surface groups on the interaction of platinum catalysts with graphene-based nanocomposites, Ind. Eng. Chem. Res., 50, 12562–12571.
  • Pantelic, R. S., Suk, J. W., Magnuson, C. W., Meyer, J. C., Wachsmuth, P., Kaiser, U., Ruoff, R. S., and Stahlberg, H. (2011). Graphene: Substrate preparation and introduction, J. Struct. Biol., 174, 234–238.
  • Parviz, D., Das, S., Ahmed, H. S. T., Irin, F., Bhattacharia, S., and Green, M. J. (2012). Dispersions of non-covalently functionalized graphene with minimal stabilizer, ACS Nano, 6, 8857–8867.
  • Pendashteh, A., Mousavi, M. F., and Rahmanifar, M. S. (2013). Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor, Electrochim. Acta, 88, 347–357.
  • Perez, J., Paganin, V. A., and Antolini, E. (2011). Particle size effect for ethanol electro-oxidation on Pt/C catalysts in half-cell and in a single direct ethanol fuel cell, J. Electroanal. Chem., 654, 108–115.
  • Pradoburguete, C., Linaressolano, A., Rodriguezreinoso, F., and Delecea, C. S. (1989). The effect of oxygen-surface groups of the support on platinum dispersion in Pt/carbon catalysts, J. Catal., 115, 98–106.
  • Qu, B., Xu, Y. T., Lin, S. J., Zheng, Y. F., and Dai, L. Z. (2010). Fabrication of Pt nanoparticles decorated PPy-MWNTs composites and their electrocatalytic activity for methanol oxidation, Synth. Met., 160, 732–742.
  • Reddy, A. L. M., Rajalakshmi, N., and Ramaprabhu, S. (2008). Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells, Carbon, 46, 2–11.
  • Sahoo, S., Karthikeyan, G., Nayak, G. C., and Das, C. K. (2011). Electrochemical characterization of in situ polypyrrole coated graphene nanocomposites, Synth. Met., 161, 1713–1719.
  • Saner, B., Dinc, F., and Yurum, Y. (2011). Utilization of multiple graphene nanosheets in fuel cells: 2. The effect of oxidation process on the characteristics of graphene nanosheets, Fuel, 90, 2609–2616.
  • Saner, B., Gursel, S. A., and Yurum, Y. (2013). Layer-by-layer polypyrrole coated graphite oxide and graphene nanosheets as catalyst support materials for fuel cells, Fullerene Nanotubes Carbon Nanostruct., 21, 233–247.
  • Saner, B., Okyay, F., and Yurum, Y. (2010). Utilization of multiple graphene layers in fuel cells. 1. An improved technique for the exfoliation of graphene-based nanosheets from graphite, Fuel, 89, 1903–1910.
  • Sepulveda-Escribano, A., Coloma, F., and Rodriguez-Reinoso, F. (1998). Platinum catalysts supported on carbon blacks with different surface chemical properties, Appl. Catal. A Gen., 173, 247–257.
  • Tien, C. P., and Teng, H. S. (2010). Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors, J. Power Sources, 195, 2414–2418.
  • Tkachev, S. V., Buslaeva, E. Y., and Gubin, S. P. (2011). Graphene: A novel carbon nanomaterial, Inorg. Mater., 47, 1–10.
  • Vernitskaya, T. V., and Efimov, O. N. (1997). Polypyrrole: A conducting polymer (synthesis, properties, and applications), Usp. Khim., 66, 489–505.
  • Wang, B., Chang, Y. H., and Zhi, L. J. (2011). High yield production of graphene and its improved property in detecting heavy metal ions, New Carbon Mater., 26, 31–35.
  • Wang, H. L., Hao, Q. L., Yang, X. J., Lu, L. D., and Wang, X. (2009a). Graphene oxide doped polyaniline for supercapacitors, Electrochem. Commun., 11, 1158–1161.
  • Wang, L. F., and Yang, R. T. (2010). Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover, Catal. Rev., 52, 411–461.
  • Wang, Y., Shi, Z. Q., Huang, Y., Ma, Y. F., Wang, C. Y., Chen, M. M., and Chen, Y. S. (2009b). Supercapacitor devices based on graphene materials, J. Phys. Chem. C, 113, 13103–13107.
  • Wang, Z. S., Zhang, R., Zhang, Z. D., Huang, Z. H., Liu, C. S., Fu, D. J., and Liu, J. R. (2013). Raman spectroscopy of few-layer graphene prepared by C-2-C-6 cluster ion implantation, Nucl. Instrum. Meth. B, 307, 40–42.
  • Watanabe, M., Sei, H., and Stonehart, P. (1989). The influence of platinum crystallite size on the electroreduction of oxygen, J. Electroanal. Chem., 261, 375–387.
  • Xu, J. S., Dang, D. K., Tran, V. T., Liu, X. Y., Chung, J. S., Hur, S. H., Choi, W. M., Kim, E. J., and Kohl, P. A. (2014). Liquid-phase exfoliation of graphene in organic solvents with addition of naphthalene, J. Colloid Interface Sci., 418, 37–42.
  • Yadav, S. K., and Cho, J. W. (2013). Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites, Appl. Surf. Sci., 266, 360–367.
  • Yang, J., Sudik, A., Wolverton, C., and Siegel, D. J. (2010). High capacity hydrogen storage materials: Attributes for automotive applications and techniques for materials discovery, Chem. Soc. Rev., 39, 656–675.
  • Yoo, E., Okada, T., Kizuka, T., and Nakamura, J. (2008). Effect of carbon substrate materials as a Pt-Ru catalyst support on the performance of direct methanol fuel cells, J. Power Sources, 180, 221–226.
  • Zhang, K., Zhang, L. L., Zhao, X. S., and Wu, J. S. (2010). Graphene/polyaniline nanoriber composites as supercapacitor electrodes, Chem. Mater., 22, 1392–1401.
  • Zhang, Y., Wang, S. R., Li, L., Zhang, K., Qiu, J. J., Davis, M., and Hope-Weeks, L. J. (2012). Tuning electrical conductivity and surface area of chemically-exfoliated graphene through nanocrystal functionalization, Mater. Chem. Phys., 135, 1057–1063.
  • Zhao, H. B., Li, L., Yang, J., and Zhang, Y. M. (2008). Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications, J. Power Sources, 184, 375–380.
  • Zhao, H. B., Yang, J., Li, L., Li, H., Wang, J. L., and Zhang, Y. M. (2009). Effect of over-oxidation treatment of Pt-Co/polypyrrole-carbon nanotube catalysts on methanol oxidation, Int. J. Hydrogen Energy, 34, 3908–3914.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.