270
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Use of Raw and Acid-Treated MnO2 as Catalysts for Oxidation of Dyes in Water: A Case Study with Aqueous Methylene Blue

&

References

  • Aguedach, A., Brosillon, S., Morvan, J., and Lhadi, E. K. (2005). Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide, Appl. Catal. B Environ., 57, 55–62.
  • APHA, AWWA (American Public Health Association). (1998). Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC.
  • Barrett, E. P., Joyner, L. G., and Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73, 373–380.
  • Bergaya, F., and Vayer, M. (1997). CEC of clays: Measurement by adsorption of a copper ethylenediamine complex, Appl. Clay Sci., 12, 275–280.
  • Chaliha, S., and Bhattacharyya, K. G. (2008). Wet oxidative method for removal of 2,4,6-trichlorophenol in water using Fe(III), Co(II), Ni(II) supported MCM41 catalysts, J. Hazard. Mater., 150, 728–736.
  • Chang, F., Xie, Y., Li, C., Chen, J., Luo, J., Hub, X., and Shen, J. (2013). A facile modification of g-C3N4with enhanced photocatalytic activity for degradation of methylene blue, Appl. Surf. Sci., 280, 967–974.
  • Colpini, L. M. S., Alves, H. J., Santos, O. A. A., and Costa, C. M. M. (2008). Discoloration and degradation of textile dye aqueous solutions with titanium oxide catalysts obtained by the sol-gel method, Dyes Pigm., 76, 525–529.
  • Dong, Y., He, K., Zhao, B., Yin, Y., Yin, L., and Zhang, A. (2007). Catalytic ozonation of azo dye active brilliant red X-3B in water with natural mineral brucite, Catal. Commun., 8, 1599–1603.
  • Emami, F., Tehrani-Bagha, A. R., Gharanjig, K., and Menger, F. M. (2010). Kinetic study of the factors controlling Fenton-promoted destruction of a non-biodegradable dye, Desalination, 257, 124–128.
  • Favre, F., Bogdal, C., Cavillet, S., and Stucki, J. W. (2006). Changes in the CEC of a soil smectite kaolinite clay fraction as induced by structural iron reduction and iron coatings dissolution, Appl. Clay Sci., 34, 95–104.
  • Favre, F., Tessier, D., Abdelmoula, M., Géisiis, J. M., Gates, W. P., and Boiviis, P. (2002). Ionic reduction and changes in cationic exchange capacity ill intermittently waterlogged soil, Eur. J. Soil Sci., 53, 175–183.
  • Ferreira-Leitao, V. S., da Silva, J. G., and Bon, E. P. S. (2003). Methylene blue and azure B oxidation by horseradish peroxidase: A comparative evaluation of class II and class III peroxidases, Appl. Catal. B Environ., 42, 213–221.
  • Ge, J., and Qu, J. (2004). Ultrasonic irradiation enhanced degradation of azo dye on MnO2, Appl. Catal. B Environ., 47, 133–140.
  • Guo, J., and Al-Dahhan, M. (2005). Catalytic wet air oxidation of phenol in concurrent downflow and upflow packed-bed reactors over pillared clay catalyst, Chem. Eng. Sci., 60, 735–746.
  • Gures, A., Karaca, S., Dogar, C., Bayrak, R., Acikyildiz, M., and Yalcin, M. (2004). Determination of adsorptive properties of clay/water system: Methylene blue sorption, J. Colloid Interface Sci., 269, 310–314.
  • Huang, F., Chen, L., Wang, H., and Yan, Z. (2010a). Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma, Chem. Eng. J., 162, 250–256.
  • Huang, J., Wang, X., Li, S., and Wang, Y. (2010b). ZnO/MoO3 mixed oxide nanotube: A highly efficient and stable catalyst for degradation of dye by air under room conditions, Appl. Surf. Sci., 257, 116–121.
  • Husain, Q. (2006). Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: A review, Crit. Rev. Biotechnol., 26, 201–221.
  • Ji, F., Li, C., Zhang, J., and Deng, L. (2011a). Heterogeneous photo-Fenton decolorization of methylene blue over LiFe(WO4)2 catalyst, J. Hazard. Mater., 186, 1979–1984.
  • Ji, F., Li, C., Zhang, J., and Deng, L. (2011b). Efficient decolorization of dye pollutants with LiFe(WO4)2 as a reusable heterogeneous Fenton-like catalyst, Desalination, 269, 284–290.
  • Kim, S. C., and Lee, D. K. (2004). Preparation of Al–Cu pillared clay catalysts for the catalytic wet oxidation of reactive dyes, Catal. Today, 97, 153–158.
  • Kondru, A. K., Kumar, P., and Chand, S. (2009). Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst, J. Hazard. Mater., 166, 342–347.
  • Lee, D. K., Cho, I. C., Lee, G. S., Kim, S. C., Kim, D. S., and Yang, Y. K. (2004). Catalytic wet oxidation of reactive dyes with H−2/O−2 mixture on Pd-Pt/Al2O3 catalysts, Sep. Purif. Technol., 34, 43–50.
  • Li, W., Li, D., Wang, J., Shao, Y., You, J., and Teng, F. (2013). Exploration of the active species in the photocatalytic degradation of methyl orange under UV light irradiation, J. Mol. Catal. A Chem., 380, 10–17.
  • Liu, Y., Chen, X., Li, J., and Burda, C. (2005). Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts, Chemosphere, 61, 11–18.
  • Liu, Y., and Sun, D. (2007). Development of Fe2O3-CeO2-TiO2/γ-Al2O3 as catalyst for catalytic wet air oxidation of methyl orange azo dye under room condition, Appl. Catal. B Environ., 72, 205–211.
  • Lucas, M. S., and Peres, J. A. (2006). Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation, Dyes Pigm., 71, 236–244.
  • Ma, H., Zhuo, Q., and Wang, B. (2009). Electro-catalytic degradation of methylene blue wastewater assisted by Fe2O3-modified kaolin, Chem. Eng. J., 155, 248–253.
  • Ma, H. Z., Zhuo, Q. F., and Wang, B. (2007). Characteristics of CuO–MoO3–P2O5 catalyst and its catalytic wet oxidation (CWO) of dye wastewater under extremely mild conditions, Environ. Sci. Technol., 41, 7491–7496.
  • Magureanu, M., Piroi, D., Gherendi, F., Mandache, N. B., and Parvulescu, V. (2008). Decomposition of methylene blue in water by corona discharges, Plasma Chem. Plasma Process., 28, 677–688.
  • Mantzavinos, D., Hellenbrand, R., Livingston, A. G., and Metcalfe, I. S. (1996). Catalytic wet oxidation of p-coumaric acid: Partial oxidation intermediates, reaction pathways and catalyst leaching, Appl. Catal. B Environ., 7, 379–396.
  • Meena, R. C., and Pachwarya, R. B. (2009). Photocatalytic degradation of model textile azo dyes in textile wastewater using methylene blue immobilized resin dowex-11, J. Sci. Ind. Res., 68, 730–734.
  • Molinari, R., Pirillo, F., Falco, M., Loddo, V., and Palmisano, L. (2004). Photocatalytic degradation of dyes by using a membrane reactor, Chem. Eng. Process., 43, 1103–1114.
  • Moreau, M., Orange, N., and Feuilloley, M. G. J. (2008). Non-thermal plasma technologies: New tools for bio-decontamination, Biotechnol. Adv., 26, 610–617.
  • Neri, G., Pistone, A., Milone, C., and Galvagno, S. (2002). Wet air oxidation of p-coumaric acid over promoted ceria catalysts, Appl. Catal. B Environ., 38, 321–329.
  • Nezamzadeh-Ejhieh, A., and Hushmandrad, S. (2010). Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst, Appl. Catal. A Gen., 388, 149–159.
  • Patterson, M. J., Angove, D. E., Cant, N. W., and Nelson, P. F. (1999). The formation of benzene and chlorobenzene during the oxidation of toluene over rhodium-based catalysts, Appl. Catal. B Environ., 20, 123–131.
  • Qu, D. (2006). Investigation of the porosity of electrolytic manganese dioxide and its performance as alkaline cathode material, J. Power Sources, 156, 692–699.
  • Rodrigues, M. G. F. (2003). Physical and catalytic characterization of Smectites from Boa-Vista, Pariba, Brazil, Ceramica, 49, 146–150.
  • Roy, S., Vashishtha, M., and Saroha, A. K. (2010). Catalytic wet air oxidation of oxalic acid using platinum catalysts in bubble column reactor: A review, J. Eng. Sci. Technol. Rev., 3, 95–107.
  • Sahoo, C., and Gupta, A. K. (2012). Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach, J. Hazard. Mater., 215–216, 302–310.
  • Serra, A. C., Docal, C., and Gonsalves, A. M. A. R. (2005). Efficient azo dye degradation by hydrogen peroxide oxidation with metalloporphyrins as catalysts, J. Mol. Catal. A Chem., 238, 192–198.
  • Sun, H., Liu, S., Liu, S., and Wang, S. (2014). A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue, Appl. Catal. B Environ., 146, 162–168.
  • Sun, S., Li, C., Sun, J., Shi, S., Fan, M., and Zhou, Q. (2009). Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study, J. Hazard. Mater., 161, 1052–1057.
  • Tharayil, N. J., Raveendran, R., Vaidyan, A. V., and Chithra, P. G. (2008). Optical, electrical and structural studies of nickel-cobalt oxide nanoparticles, Indian J. Eng. Mater. Sci., 15, 489–496.
  • Tilli, S., Ciullini, I., Scozzafava, A., and Briganti, F. (2011). Differential decolorization of textile dyes in mixtures and the joint effect of laccase and cellobiose dehydrogenase activities present in extracellular extracts from Funalia trogii, Enzyme Microb. Technol., 49, 465–471.
  • Ursachi, I., Stancu, A., and Vasile, A. (2012). Magnetica-Fe2O3/MCM-41 nanocomposites: Preparation, characterization, and catalytic activity for methylene blue degradation, J. Colloid Interface Sci., 377, 184–190.
  • Verenich, S., Laari, A., and Kallas, J. (2000). Wet oxidation of concentrated wastewaters of paper mills for water cycle closing, Waste Manage., 20, 287–293.
  • Wu, G., Thind, S. S., Wen, J., Yan, K., and Chen, A. (2013). A novel nanoporous α C3N4 photocatalyst with superior high visible light activity, Appl. Catal. B Environ., 142–143, 590–597.
  • Wu, Q., Hu, X. J., Yue, P. L., Zhao, X. S., and Lu, G. Q. (2001). Copper/MCM-41 as catalyst for the wet oxidation of phenol, Appl. Catal. B Environ., 32, 151–156.
  • Yan, K., Wu, G., Jarvis, C., Wen, J., and Chen, A. (2013). Facile synthesis of porous microspheres composed of TiO2 nanorods with high photocatalytic activity for hydrogen production, Appl. Catal. B Environ., 148–149, 281–287.
  • Yuan, A., Zhou, M., Wang, X., Sun, Z., and Wang, Y. (2008). Synthesis and characterization of nanostructured manganese dioxide used as positive electrode material for electrochemical capacitor with lithium hydroxide electrolyte, Chin. J. Chem., 26, 65–69.
  • Yuan, M., Wang, S., Wang, X., Zhao, L., and Hao, T. (2011). Removal of organic dye by air and macroporous ZnO/MoO3/SiO2 hybrid under room conditions, Appl. Surf. Sci., 257, 7913–7919.
  • Zhang, J., Yu, K., Yu, Y., Lou, L., Yang, Z., Yang, J., and Liu, S. (2014). Highly effective and stable Ag3PO4/WO3 photocatalysts for visible light degradation of organic dyes, J. Mol. Catal. A Chem., 391, 12–18.
  • Zhang, W., Yang, Z., Wang, X., Zhang, Y., Wen, X., and Yang, S. (2006). Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye, Catal. Commun., 7, 408–412.
  • Zhang, Y., Li, D., Chen, Y., Wang, X., and Wang, S. (2009). Catalytic wet air oxidation of dye pollutants by polyoxomolybdate nanotubes under room condition, Appl. Catal. B Environ., 86, 182–189.
  • Zhuo, Q., Ma, H., Wang, B., and Fan, F. (2008). Degradation of methylene blue: Optimization of operating condition through a statistical technique and environmental estimate of the treated wastewater, J. Hazard. Mater., 153, 44–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.